Sonocatalytic degradation of 2-hydroxyethyl cellulose in the presence of some nanoparticles.

Ultrason Sonochem

University of Tabriz, Faculty of Chemistry, Department of Physical Chemistry, Tabriz, Iran.

Published: September 2015

The degradation of 2-hydroxyethyl cellulose (HEC) by means of ultrasound irradiation and its combination with heterogeneous catalysts such as TiO2 (Rutile and Anatase), Montmorillonite Clay (MMT), ZnO and Fe3O4 nanoparticles was investigated. The effect of the type and quantity of nanoparticles, the initial molecular weight of polymer and the different ultrasonic power have been studied. Degradation behavior of HEC was studied through FTIR, XRD and SEM techniques and kinetics of degradation was studied by viscometry. Also, reduce in molecular weight (Mw) of polymer was investigated by gel permeation chromatography (GPC) analysis. The results of experiments suggested that the sonocatalytic degradation of HEC were remarkably higher than sonolytic degradation. However, the catalytic activity of nanoparticles in contrast to the ultrasonic irradiation was different. The experimental results revealed that the best HEC degradation can be obtained when the added Fe3O4 amount was 0.4 g/L. Furthermore, kinetic analysis of the polymer degradation process was carried out in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2014.12.014DOI Listing

Publication Analysis

Top Keywords

sonocatalytic degradation
8
degradation 2-hydroxyethyl
8
2-hydroxyethyl cellulose
8
molecular weight
8
weight polymer
8
degradation
7
cellulose presence
4
nanoparticles
4
presence nanoparticles
4
nanoparticles degradation
4

Similar Publications

This research highlights a sustainable approach for the design and synthesis of a magnetic nickel ferrite (NiFeO) catalyst reutilizing industrial waste, specifically iron ore tailing and Raney nickel catalyst processing waste, by simple co-precipitation method. Transforming waste materials into high-performance catalysts, this study aligns with the principles of a circular economy, addressing both environmental waste and pollution. Structural characterization by X-ray diffraction (XRD) and microscopic (FESEM and TEM) revealed the formation of well crystalline nano ferrite with NiFeO nanoparticles with cubic spinel structure.

View Article and Find Full Text PDF

Sonocatalytic degradation of RB-5 dye using ZnO nanoparticles doped with transition metals.

Environ Sci Pollut Res Int

January 2025

Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 420, C.P. 02128, Mexico City, Mexico.

In this study, ZnO was doped and co-doped with rhodium and tungsten to assess the impact of these transition metals on the sonocatalytic degradation of reactive black 5 azo dye (RB-5). Structural analysis revealed that doping ZnO with 1% Rh and W does not alter its wurtzite hexagonal structure, although minor changes in cell parameters were observed due to differences in electronic density. Interestingly, co-doping resulted in lower degradation efficiency than single doping, with W-ZnO emerging as the most effective catalyst, achieving 100% RB-5 degradation within 60 min, likely due to a higher density of oxygen vacancies and hydroxyl groups.

View Article and Find Full Text PDF

Multienzyme-like polyoxometalate for oxygen-independent sonocatalytic enhanced cancer therapy.

J Colloid Interface Sci

March 2025

School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China. Electronic address:

Artificially synthesized nanozymes exhibit enzymatic activity similar to that of natural enzymes. However, in the complex tumor microenvironment, their diversity and catalytic activity show significant variations, limiting their effectiveness in catalytic therapy. Developing artificial enzymes with multiple enzymatic activities and spatiotemporal controllable catalytic abilities is of great clinical significance.

View Article and Find Full Text PDF

Cu(II) and Mn(II) coordination polymers [Cu(ttpa)(sub)] ( or ) and {[Mn(ttpa)(nip)(HO)]·3HO} ( or ) (ttpa = tris(4-(1,2,4-triazol-1-yl)phenyl)amine, Hsub = suberic acid, nip = 5-nitroisophthalicate) were hydrothermally prepared and the structures were characterized. exhibited a 2D (4,4) network based on [Cu(COO)] dimers with upper and lower dangled ttpa ligands and a 2D → 3D polythreaded network. showed a 2D (4,4) network with dangled uncoordinated triazole rings from ttpa ligands and nitro groups from nip ligands and a 2D → 3D polythreaded network.

View Article and Find Full Text PDF

As an emerging therapeutic method, the application of sonodynamic therapy (SDT) is hindered by its intrinsic unsatisfactory efficiency, the tumor hypoxia and low tumor specificity. Here, we reported the design of a tumor-targeting multifunctional nanodrug for O-generation/O-economization dually enhanced SDT/chemodynamic therapy (CDT) combination therapy. After the co-encapsulation of sonosensitizer indocyanine green (ICG) and oxidative phosphorylation inhibitor metformin (Met) into hollow MnO (H-MnO) nanoparticles, ICG/Met@H-MnO@MPN-FA (IMMMF) was conveniently prepared through the formation of metal-phenolic networks (MPNs) between Fe and folic acid (FA) immobilized tannic acid (TA, TA-FA) onto its surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!