Previous research has demonstrated that auditory rhythms affect both movement and physiological functions. We hypothesized that the ecological sounds of human breathing can affect breathing more than artificial sounds of breathing, varying in tones for inspiration and expiration. To address this question, we monitored the breath duration of participants exposed to three conditions: (a) ecological sounds of breathing, (b) artificial sounds of breathing having equal temporal features as the ecological sounds, (c) no sounds (control). We found that participants' breath duration variability was reduced in the ecological sound condition, more than in the artificial sound condition. We suggest that ecological sounds captured the timing of breathing better than artificial sounds, guiding as a consequence participants' breathing. We interpreted our results according to the Theory of Event Coding, providing further support to its validity, and suggesting its possible extension in the domain of physiological functions which are both consciously and unconsciously controlled.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00426-015-0647-zDOI Listing

Publication Analysis

Top Keywords

ecological sounds
20
artificial sounds
16
breath duration
12
sounds breathing
12
sounds
9
physiological functions
8
breathing artificial
8
sound condition
8
breathing
7
ecological
6

Similar Publications

Marine protected areas (MPAs) are widely implemented tools for long-term ocean conservation and resource management. Assessments of MPA performance have largely focused on specific ecosystems individually and have rarely evaluated performance across multiple ecosystems either in an individual MPA or across an MPA network. We evaluated the conservation performance of 59 MPAs in California's large MPA network, which encompasses 4 primary ecosystems (surf zone, kelp forest, shallow reef, deep reef) and 4 bioregions, and identified MPA attributes that best explain performance.

View Article and Find Full Text PDF

Background: Trimming is critical for a functioning equine hoof. Pressure distribution provides information on loading; however, information on the effects of trimming on pressure distribution is lacking.

Objectives: To describe the pressure changes of equine fore feet following trimming.

View Article and Find Full Text PDF

Data on gait parameters during real-life activities and home rehabilitation programs for Persons with Parkinson's disease (PwPDs) are scarce. Although cueing has been shown to improve their gait in laboratory conditions, few studies have applied this technique in at-home rehabilitation programs. Our study aimed to explore the use of a real-time synchronized beat-step music program for at-home rehabilitation.

View Article and Find Full Text PDF

Foxtail millet (Setaria italica L.) is nutritionally superior to other cereals of the family Poaceae, with the potential to perform better in marginal environments. In the present context of climate change, ecologically sound and low-input foxtail millet varieties can be chosen for agricultural sustainability.

View Article and Find Full Text PDF

Collecting fog water is crucial for dry areas since natural moisture and fog are significant sources of freshwater. Sustainable and energy-efficient water collection systems can take a page out of the cactus's playbook by mimicking its native fog gathering process. Inspired by the unique geometric structure of the cactus spine, we fabricated a bioinspired artificial fog collector consisting of cactus spines featuring barbs of different sizes and angles on the surfaces for water collection and a series of microcavities within microchannels inspired by Nepenthes Alata on the bottom to facilitate water flowing to the reservoir.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!