A novel vortex-assisted surfactant-enhanced dispersive liquid-liquid microextraction combined with high-performance liquid chromatography (VASEDLLME-HPLC) was developed for the determination of thymol and carvacrol (phenolic compound). In this method, the extraction solvent (CHCl3) was dispersed into the aqueous samples via a vortex agitator and addition of the surfactant (Triton X-100). The preliminary experiments were undertaken to select the best extraction solvent and surfactant. The influences of effective variables were investigated using a Plackett-Burman 2(7-4) screening design and then, the significant variables were optimized by using a central composite design combined with desirability function. Working under optimum conditions specified as: 140 µL CHCl3, 0.08% (w/v, Triton X-100), 3 min extraction time, 6 min centrifugation at 4,500 rpm, pH 7, 0.0% (w/v) NaCl permit achievement of high and reasonable linear range over 0.005-4.0 mg L(-1) with R(2) = 0.9998 (n = 10). The separation of thymol and carvacrol was achieved in <14 min using a C18 column and an isocratic binary mobile phase acetonitrile-water (55:45, v/v) with a flow rate of 1.0 mL min(-1). The VASEDLLME is applied for successful determination of carvacrol and thymol in different thyme and pharmaceutical samples with relative standard deviation <4.7% (n = 5).

Download full-text PDF

Source
http://dx.doi.org/10.1093/chromsci/bmu216DOI Listing

Publication Analysis

Top Keywords

thymol carvacrol
12
vortex-assisted surfactant-enhanced
8
extraction solvent
8
triton x-100
8
application optimized
4
optimized vortex-assisted
4
surfactant-enhanced dllme
4
dllme preconcentration
4
preconcentration thymol
4
carvacrol determination
4

Similar Publications

Bioactive compounds and organic acids are applied to a wide range of foods against different types of foodborne pathogens. In the present study, carvacrol and thymol (1000 mg/L) were applied in wine-based marinades, alone or in combination with them and in combination with tartaric acid, malic acid, ascorbic acid, citric acid, and acetic acid (in concentration 0.1% /), in chicken and beef fillets and their antimicrobial activity, antioxidant capacity, and pH were estimated during refrigerated storage.

View Article and Find Full Text PDF

Antibacterial Activity of Selected Essential Oil Components and Their Derivatives: A Review.

Antibiotics (Basel)

January 2025

Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice 5700, South Africa.

Essential oils (EOs) are gaining ground and have been intensively studied due to their widespread use in the pharmaceutical, food, and cosmetics industries. The essential components of EOs have been recognized for diverse therapeutic activities and have gained significant attention for their potential antibacterial activities. Despite the popularity of EOs and potent biological properties, their bioactive components and their derivatives are still not comprehensively characterized.

View Article and Find Full Text PDF

Effects of combinations of the essential oils trans-anethole, thymol and carvacrol against larvae of the screwworm fly Cochliomyia hominivorax in vitro.

Vet Parasitol

January 2025

Laboratório de Quimioterapia Experimental em Parasitologia Veterinária (LQEPV), Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil; Departamento de Parasitologia Animal, Instituto de Medicina Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil.

This study investigated the combined effect of trans-anethole, carvacrol and thymol on third-instar larvae of C. hominivorax. For this experiment, third-stage larvae of C.

View Article and Find Full Text PDF

Essential oils (EOs) exhibit a broad spectrum of biological activities; however, their clinical application is hindered by challenges, such as variability in chemical composition and chemical/physical instability. A critical limitation is the lack of chemical consistency across EO samples, which impedes standardization. Despite this, evidence suggests that EOs with differing chemical profiles often display similar (micro)biological activities, raising the possibility of standardizing EOs based on their biological effects rather than their chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!