The process of DNA transposition involves the binding, cleavage, and recombination of specific DNA segments (transposable elements, TE) and is catalyzed by special enzymes encoded by the TE transposases. REP-associated tyrosine transposases (RAYTs) are a class of Y1 nucleases related to the IS200/IS605 transposases associated with a bacterial TE known as repetitive extragenic palindrome elements (REPs). Although RAYT has been subject of numerous studies, where DNA binding and cleavage by RAYT have been confirmed for Escherichia coli, the molecular mechanism of DNA insertion has not been fully understood. In this work, it is demonstrated that surface plasmon resonance (SPR) biosensor technology combined with a system of DNA hairpin probes (mimicking the natural REP sequence) and short oligonucleotides (ONs) can provide a rapid and real-time platform for monitoring and quantification of RAYT activity. We utilized RAYT from E. coli (strain MG1655) as a model system, where we evaluated its activity towards both a natural REP sequence as well as REP sequences having modifications targeting specific features of the DNA crucial for the DNA binding and cleavage. The characteristics of the RAYT-DNA interaction obtained by means of the SPR approach were compared with the results of SDS-PAGE analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-015-8491-yDOI Listing

Publication Analysis

Top Keywords

binding cleavage
12
rayt activity
8
surface plasmon
8
plasmon resonance
8
dna binding
8
natural rep
8
rep sequence
8
dna
7
monitoring rayt
4
activity surface
4

Similar Publications

Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research.

View Article and Find Full Text PDF

Circular RNA Formation and Degradation Are Not Directed by Universal Pathways.

Int J Mol Sci

January 2025

Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.

Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5' splice donor and an upstream 3' splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic-intronic) and their isoforms.

View Article and Find Full Text PDF

Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).

View Article and Find Full Text PDF

HERV-W Env Induces Neuron Pyroptosis via the NLRP3-CASP1-GSDMD Pathway in Recent-Onset Schizophrenia.

Int J Mol Sci

January 2025

State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.

HERVs (Human endogenous retroviruses) are remnants of ancient exogenous retroviruses that have integrated into the human genome, particularly in germ-line cells. Among these, the envelope protein gene (Human endogenous retroviruses W family envelope protein), located on chromosome 7 and primarily expressed in the human placenta, has been closely linked to various neuropsychiatric disorders, including schizophrenia, as well as autoimmune diseases and cancer. Recent studies have highlighted the abnormal expression of cytokines as a key factor in the pathophysiology of schizophrenia.

View Article and Find Full Text PDF

Mutations Causing X-Linked Recessive Oligodontia with Variable Expression.

Genes (Basel)

December 2024

Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea.

Background/objectives: The ectodysplasin A () gene, a member of the tumor necrosis factor ligand superfamily, is involved in the early epithelial-mesenchymal interaction that regulates ectoderm-derived appendage formation. Numerous studies have shown that mutations in the gene can cause X-linked ectodermal dysplasia (ED) and non-syndromic oligodontia (NSO). Accordingly, this study aimed to identify the causative genetic mutations of the gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!