Iron is an essential element to most life forms including mycobacterial species. However, in the oxidative atmosphere iron exists as insoluble salts. Free and soluble iron ions are scarce in both the extracellular and intracellular environment which makes iron assimilation very challenging to mycobacteria. Tuberculosis, caused by the pathogen, Mycobacterium tuberculosis, is one of the most infectious and deadly diseases in the world. Extensive studies regarding iron acquisition strategies have been documented in mycobacteria, including work on the mycobacterial iron chelators (siderophores), the iron-responsive regulon, and iron transport and utilization pathways. Under low iron conditions, expression of the genes encoding iron importers, exporters and siderophore biosynthetic enzymes is up-regulated significantly increasing the ability of the bacteria to acquire limited host iron. Disabling these proteins impairs the growth of mycobacteria under low iron conditions both in vitro and in vivo, and that of pathogenic mycobacteria in animal models. Drugs targeting siderophore-mediated iron transport could offer promising therapeutic options. However, the discovery and characterization of an alternative iron acquisition mechanism, the heme transport and utilization pathway, questions the effectiveness of the siderophore-centered therapeutic strategy. Links have been found between these two distinct iron acquisition mechanisms, thus, targeting a few candidate proteins or mechanisms may influence both pathways, leading to effective elimination of the bacteria in the host.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tube.2015.01.004 | DOI Listing |
Nature
January 2025
Department of Genetics, Trinity College Dublin, Dublin, Ireland.
Roman writers found the relative empowerment of Celtic women remarkable. In southern Britain, the Late Iron Age Durotriges tribe often buried women with substantial grave goods. Here we analyse 57 ancient genomes from Durotrigian burial sites and find an extended kin group centred around a single maternal lineage, with unrelated (presumably inward migrating) burials being predominantly male.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Laboratory Functional Physiology and Bio-Resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba BP 382, 9000, Beja, Tunisia.
Iron overload has been shown to have deleterious effects in the brain through the formation of reactive oxygen species, which ultimately may contribute to neurodegenerative disorders. Accordingly, rodent studies have indicated that systemic administration of iron produces excess iron in the brain and results in behavioral and cognitive deficits. To what extent cognitive abilities are affected and which neurobiological mechanisms underlie those deficits remain to be more fully characterized.
View Article and Find Full Text PDFJ Magn Reson
January 2025
Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA. Electronic address:
Harmonizing and validating Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of Xe observed from human subjects in vivo and 2) has short enough T times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase Xe phantoms yielding chemical shifts of 212.
View Article and Find Full Text PDFBiochemistry
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States.
Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China. Electronic address:
The FeO nanoparticle synthesized by Acidithiobacillus ferrooxidans have a broad practical value, while the low yield limits their commercial application. Herein, we employed a C heavy-ion beam to induce mutagenesis of A. ferrooxidans BYM and successfully screened a mutant BYMT-200 with a 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!