Nuclear ribosomal ITS functional paralogs resolve the phylogenetic relationships of a late-Miocene radiation cycad Cycas (Cycadaceae).

PLoS One

Science Division, Royal Botanic Garden Edinburgh, Edinburg, Scotland, United Kingdom.

Published: January 2016

Cycas is the most widespread and diverse genus among the ancient cycads, but the extant species could be the product of late Miocene rapid radiations. Taxonomic treatments to date for this genus are quite controversial, which makes it difficult to elucidate its evolutionary history. We cloned 161 genomic ITS sequences from 31 species representing all sections of Cycas. The divergent ITS paralogs were examined within each species and identified as putative pseudogenes, recombinants and functional paralogs. Functional paralogs were used to reconstruct phylogenetic relationships with pseudogene sequences as molecular outgroups, since an unambiguous ITS sequence alignment with their closest relatives, the Zamiaceae, is unachievable. A fully resolved and highly supported tree topology was obtained at the section level, with two major clades including six minor clades. The results fully supported the classification scheme proposed by Hill (2004) at the section level, with the minor clades representing his six sections. The two major clades could be recognised as two subgenera. The obtained pattern of phylogenetic relationships, combined with the different seed dispersal capabilities and paleogeography, allowed us to propose a late Miocene rapid radiation of Cycas that might have been promoted by vicariant events associated with the complex topography and orogeny of South China and adjacent regions. In contrast, transoceanic dispersals might have played an important role in the rapid diversification of sect. Cycas, whose members have evolved a spongy layer in their seeds aiding water dispersals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311995PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117971PLOS

Publication Analysis

Top Keywords

functional paralogs
12
phylogenetic relationships
12
late miocene
8
miocene rapid
8
representing sections
8
major clades
8
minor clades
8
cycas
5
nuclear ribosomal
4
ribosomal functional
4

Similar Publications

Background And Objectives: Epididymal transit renders key competence to mammalian spermatozoa for fertilizing eggs. Generally, the two paralogs of glycogen synthase kinase 3, GSK3α and GSK3β, functionally overlap except in testis and sperm. We showed that GSK3α is essential for epididymal sperm maturation and fertilization.

View Article and Find Full Text PDF

Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily.

View Article and Find Full Text PDF

Paramount to human health, symbiotic bacteria in the gastrointestinal tract rely on the breakdown of complex polysaccharides to thrive in this sugar-deprived environment. Gut Bacteroides are metabolic generalists and deploy dozens of polysaccharide utilization loci (PULs) to forage diverse dietary and host-derived glycans. The expression of the multi-protein PUL complexes is tightly regulated at the transcriptional level.

View Article and Find Full Text PDF

The genomes of human gut bacteria in the genus Bacteroides include numerous operons for biosynthesis of diverse capsular polysaccharides (CPSs). The first two genes of each CPS operon encode a locus-specific paralog of transcription elongation factor NusG (called UpxY), which enhances transcript elongation, and a UpxZ protein that inhibits noncognate UpxYs. This process, together with promoter inversions, ensures that a single CPS operon is transcribed in most cells.

View Article and Find Full Text PDF

The evolution of green plants from aquatic to terrestrial environments is thought to have been facilitated by the acquisition of gametangia, specialized multicellular organs housing gametes. Antheridia and archegonia, responsible for producing and protecting sperm and egg cells, undergo formative cell divisions to produce a cell to differentiate into germ cell lineages and the other cell to give rise to surrounding structures. However, the genes governing this process remain unidentified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!