δ-Catenin, an adherens junctions protein, is not only involved in early development, cell-cell adhesion and cell motility in neuronal cells, but it also plays an important role in vascular endothelial cell motility and pathological angiogenesis. In this study, we report a new function of δ-catenin in lymphangiogenesis. Consistent with expression of δ-catenin in vascular endothelial cells, we detected expression of the gene in lymphatic endothelial cells (LECs). Ectopic expression of δ-catenin in LECs increased cell motility and lymphatic vascular network formation in vitro and lymphangiogenesis in vivo in a Matrigel plug assay. Conversely, knockdown of δ-catenin in LECs impaired lymphangiogenesis in vitro and in vivo. Biochemical analysis shows that δ-catenin regulates activation of Rho family small GTPases, key mediators in cell motility. δ-catenin activates Rac1 and Cdc42 but inhibits RhoA in LECs. Notably, blocking of Rac1 activation impaired δ-catenin mediated lymphangiogenesis in a Matrigel assay. Consistently, loss of δ-catenin in mice inhibited the growth of tumor metastases. Taken together, these findings identify a new function of δ-catenin in lymphangiogenesis and tumor growth/metastasis, likely through modulation of small Rho GTPase activation. Targeting δ-catenin may offer a new way to control tumor metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312076 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116338 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!