Osteocyte-derived insulin-like growth factor I is not essential for the bone repletion response in mice.

PLoS One

Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America.

Published: October 2015

The present study sought to evaluate the functional role of osteocyte-derived IGF-I in the bone repletion process by determining whether deficient expression of Igf1 in osteocytes would impair the bone repletion response to one week of dietary calcium repletion after two weeks of dietary calcium deprivation. As expected, the two-week dietary calcium depletion led to hypocalcemia, secondary hyperparathyroidism, and increases in bone resorption and bone loss in both Igf1 osteocyte conditional knockout (cKO) mutants and WT control mice. Thus, conditional disruption of Igf1 in osteocytes did not impair the calcium depletion-induced bone resorption. After one week of calcium repletion, both cKO mutants and WT littermates showed an increase in endosteal bone formation attended by the reduction in osteoclast number, indicating that deficient Igf1 expression in osteocytes also did not have deleterious effects on the bone repletion response. The lack of an effect of deficient osteocyte-derived IGF-I expression on bone repletion is unexpected since previous studies show that these Igf1 osteocyte cKO mice exhibited impaired developmental growth and displayed complete resistance to bone anabolic effects of loading. These studies suggest that there is a dichotomy between the mechanisms necessary for anabolic responses to mechanical loading and the regulatory hormonal and anabolic skeletal repletion following low dietary calcium challenge. In conclusion, to our knowledge this study has demonstrated for the first time that osteocyte-derived IGF-I, which is essential for anabolic bone response to mechanical loading, is not a key regulatory factor for bone repletion after a low calcium challenge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312049PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115897PLOS

Publication Analysis

Top Keywords

bone repletion
24
dietary calcium
16
bone
12
repletion response
12
osteocyte-derived igf-i
12
repletion
9
igf1 osteocytes
8
osteocytes impair
8
calcium repletion
8
bone resorption
8

Similar Publications

Patients with chronic inflammation are burdened with anemia of inflammation (AI), where inflammatory cytokines inhibit erythropoiesis, impede erythropoietin production, and limit iron availability by inducing the iron regulator hepcidin. High hepcidin hinders iron absorption and recycling, thereby worsening the impaired erythropoiesis by restricting iron availability. AI management is important as anemia impacts quality of life and potentially affects morbidity and mortality.

View Article and Find Full Text PDF

Epidemiological data on vitamin D status revealed that, despite various dosage and durations of supplementation, the effectiveness often fails to achieve optimal outcomes. The need for higher doses than previously recommended was suggested, but several modifying factors should be considered, including the level of deficiency, and BMI. The objectives of this post hoc evaluation are to characterize treatment effectiveness based on the applied dose, duration and BMI; and to assess the safety aspects associated with rapid repletion of vitamin D.

View Article and Find Full Text PDF

Introduction: Posttransplant cyclophosphamide (PTCy) has revolutionized the landscape of human leukocyte antigen (HLA)-haploidentical hematopoietic cell transplantation (haplo-HCT), providing a pivotal therapeutic option for patients with hematological malignancies who lack an HLA-matched donor.

Methods: In this retrospective analysis involving 54 adult patients undergoing PTCy-based haplo-HCT, we evaluated the impact of inhibitory killer immunoglobulin-like receptor (KIR)/HLA mismatch, alongside patient, donor, and transplant factors, on clinical outcomes within a homogeneous cohort characterized by a myeloablative conditioning regimen and bone marrow graft.

Results: With a median follow-up of 73.

View Article and Find Full Text PDF

Palladium-Based Nanocomposites Remodel Osteoporotic Microenvironment by Bone-Targeted Hydrogen Enrichment and Zincum Repletion.

Research (Wash D C)

December 2024

The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China.

Osteoporosis presents a marked global public health challenge, characterized by deficient osteogenesis and a deteriorating immune microenvironment. Conventional clinical interventions primarily target osteoclast-mediated bone damage, yet lack a comprehensive therapeutic approach that balances bone formation and resorption. Herein, we introduce a bone-targeted nanocomposite, A-Z@Pd(H), designed to address these challenges by integrating diverse functional components.

View Article and Find Full Text PDF

Context: Sclerostin inhibits canonical Wnt signaling, a pathway promoting bone formation. The effects of vitamin D3, omega-3 fatty acids (omega-3s), and exercise on serum sclerostin levels and bone metabolism are unclear.

Objective: To investigate the effects of 2000 IU/d vitamin D3, 1g/d omega-3s, and a simple home-based strength exercise program (SHEP), alone or in combination, on serum sclerostin and bone turnover marker levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!