Life history theory posits that the sequence and timing of events in an organism's lifespan are fine-tuned by evolution to maximize the production of viable offspring. In a virus, a life history strategy is largely manifested in its replication mode. Here, we develop a stochastic mathematical model to infer the replication mode shaping the structure and mutation distribution of a poliovirus population in an intact single infected cell. We measure production of RNA and poliovirus particles through the infection cycle, and use these data to infer the parameters of our model. We find that on average the viral progeny produced from each cell are approximately five generations removed from the infecting virus. Multiple generations within a single cell infection provide opportunities for significant accumulation of mutations per viral genome and for intracellular selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311501PMC
http://dx.doi.org/10.7554/eLife.03753DOI Listing

Publication Analysis

Top Keywords

mutation distribution
8
life history
8
replication mode
8
experimentally guided
4
guided models
4
models reveal
4
reveal replication
4
replication principles
4
principles shape
4
shape mutation
4

Similar Publications

Little is known about the impact of recent advances in acute myeloid leukemia (AML) treatment on racial/ethnic disparities in survival outcomes. We performed a retrospective cohort study of patients with newly diagnosed AML using data from a nationwide electronic health record-derived deidentified database. Patients were categorized based on their diagnosis date relative to venetoclax approval, as pre-novel therapy era (Pre era; 2014-2018; n = 2998) or post-novel therapy era (Post era; 2019-2022; n = 2098).

View Article and Find Full Text PDF

Binimetinib is a MEK1/2 inhibitor particularly active in cells harboring activating mutations in the MAP kinase pathway, especially in BRAF and NRAS. Binimetinib, in combination with encorafenib, has received marketing approval in several jurisdictions for the treatment of patients with BRAF V600E or V600K mutant melanoma. The absorption, distribution, metabolism, and excretion of binimetinib were evaluated by administering a carbon 14-labeled binimetinib 45 mg dose (containing 40 μCi of radiolabeled material) to 6 healthy male participants.

View Article and Find Full Text PDF

Objective: To explore the impact of molecular subtype in endometrial cancer (EC) on CD8+T cell densities. Furthermore, this work will test the assumption that all mismatch repair deficient (MMRd) tumours are immunologically similar which would enable current trial data to be generalised to all MMRd ECs.

Methods And Analysis: All tumours were characterised into the four clinical molecular subtypes.

View Article and Find Full Text PDF

Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.

JMIRx Med

January 2025

Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.

Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.

View Article and Find Full Text PDF

Opportunistic bacterial pathogens must compete with other bacteria and switch between host- and environment-adapted states. Type VI secretion systems (T6SSs) occur widely in gram-negative bacteria and can efficiently kill neighboring competitors. We determined the distribution of T6SSs across the genus Serratia and observed that a highly conserved antibacterial T6SS is differentially active between closely related clinical isolates of Serratia marcescens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!