RNases J1 and J2 are critical pleiotropic regulators in Streptococcus mutans.

Microbiology (Reading)

Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Division of Oral Biology, University of Oklahoma Health Sciences Center, OK 73104, USA

Published: April 2015

In recent years, it has become increasingly evident that post-transcriptional control mechanisms are the principal source of gene regulation for a large number of prokaryotic genetic pathways, particularly those involved in virulence and environmental adaptation. Post-transcriptional regulation is largely governed by RNA stability, which itself is determined by target accessibility to RNase degradation. In most Firmicutes species, mRNA stability is strongly impacted by the activity of two recently discovered RNases referred to as RNase J1 and RNase J2. Little is known about RNase J1 function in bacteria and even less is known about RNase J2. In the current study, we mutated both RNase J orthologues in Streptococcus mutans to determine their functional roles in the cell. Single and double RNase J mutants were viable, but grew very slowly on agar plates. All of the mutants shared substantial defects in growth, morphology, acid tolerance, natural competence and biofilm formation. However, most of these defects were more severe in the RNase J2 mutant. Phenotypic suppression results also implicate a role for RNase J2 as a regulator of RNase J1 function. Unlike Bacillus subtilis, RNase J2 is a major pleiotropic regulator in S. mutans, which indicates some fundamental differences from B. subtilis in global gene regulation. Key conserved residues among the RNase J2 orthologues of lactic acid bacteria may hint at a greater role for RNase J2 in these species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857446PMC
http://dx.doi.org/10.1099/mic.0.000039DOI Listing

Publication Analysis

Top Keywords

rnase
13
streptococcus mutans
8
gene regulation
8
rnase rnase
8
rnase function
8
rnase orthologues
8
role rnase
8
rnases critical
4
critical pleiotropic
4
pleiotropic regulators
4

Similar Publications

Background: Argonaute2 (Ago2) plays an essential role in RISC-mediated silencing of target mRNAs, which are critical for cellular functions. Argonaute2 Syndrome, also known as Ago2 Syndrome, is a rare neurological disorder recently discovered in humans. It has significant implications for brain development, yet it remains unstudied to date METHOD: To study this effect, we deleted the Ago2 gene in GABAergic (Slc32a1 cre) and Glutamatergic (Slc17a6 cre) mice.

View Article and Find Full Text PDF

Background: Circular RNAs (circRNAs) play multifaceted roles to precisely control expression of broad gene networks. These highly stable molecules are often accumulated in the mammalian brain and thought to serve as "memory molecules" that govern the long process of aging. Mounting evidence demonstrated circRNA dysregulation in the postmortem brains of Alzheimer's disease (AD).

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) represents the most prevalent subtype, accounting for nearly 80% of all RCC cases. Recent research has shown that high expression of circular non-coding RNA (circRNA) is associated with poor prognosis in patients with renal clear cell carcinoma (ccRCC), however, the underlying mechanism remains unclear.

Methods: After analysing self-sequenced renal cancer and paracancer circRNA sequencing data and comparing it with the GEO public database, we discovered that circASAP1 expression was significantly up-regulated in renal cancers.

View Article and Find Full Text PDF

Has_circ_ASH1L acts as a sponge for miR-1254 to promote the malignant progression of cervical cancer by targeting CD36.

Cancer Gene Ther

January 2025

Reproductive Medical Center/Hubei Medical Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, China.

Cervical cancer (CC) is a prevalent gynecological malignancy. Increasing evidence suggests that circular RNAs (circRNAs) play a pivotal role in the pathogenesis of CC. However, the regulatory function of circ_ASH1L in CC remains elusive.

View Article and Find Full Text PDF

MARTRE family proteins negatively regulate CCR4-NOT activity to protect poly(A) tail length and promote translation of maternal mRNA.

Nat Commun

January 2025

Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

Article Synopsis
  • The study focuses on the role of a newly discovered protein family called MARTRE in regulating the poly(A) tail length of maternal mRNA during early embryo development in mice.
  • MARTRE proteins inhibit the deadenylase CCR4-NOT, helping to maintain longer poly(A) tails and enhance mRNA translation efficiency.
  • Deleting the Martre genes leads to shortened poly(A) tails, reduced mRNA translation, and delays in early embryonic development, emphasizing the importance of MARTRE in the translation of maternal mRNA.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!