Detection of Epstein-Barr virus (EBV) in human lymphoma tissue by a novel microbial detection array.

Biomark Res

Deptartment of Pathology and Laboratory Medicine, University of California, Davis Medical Center, PATH Bldg. 4400V Street, Sacramento, CA 95817 USA.

Published: January 2015

Background: Infectious agents are estimated to play a causative role in approximately 20% of cancers worldwide. Viruses, notably the Epstein-Barr virus (EBV), are associated with 10-15% of B-cell lymphomas and are found at a higher frequency in immunosuppressed patients. In this study, we screened human lymphoma tissues using a novel Lawrence Livermore Microbial Detection Array (LLMDA), a comprehensive detection system that contains probes for all sequenced viruses and bacteria. This technology has been applied to identify pathogen-associated diseases.

Results: We evaluated samples from 58 cases with various lymphoid tissue disorders using LLMDA. These included 30 B-cell lymphomas (9 indolent and 21 aggressive type), 2 T-cell lymphomas and 2 NK/T cell lymphomas, 4 plasmacytomas as well as 8 specimens of benign lymphoid tissue. Five of 21 high-grade B-cell lymphomas were positive for Epstein-Barr virus-encoded small RNA (EBER+), while all the indolent B-cell lymphomas were EBER-. Similarly, both NK/T cell lymphomas were EBER+, and the benign tissues were EBER-. We also screened 10 cases of post-transplant lymphoproliferative disorder (PTLD). Five of these cases (4 B-cell lymphomas and 1 NK/T cell lymphoma) were EBER+, and the remaining five cases were EBER-.

Conclusions: We have confirmed the reliability of the LLMDA methods by detecting EBV in EBV-positive lymphomas while observing no false-positive results in EBV-negative lymphomas. The LLMDA technique provides a sensitive and alternative method for identifying known viral pathogen associated with tumors and may prove useful for future clinical identification of novel cancer-associated viral pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310026PMC
http://dx.doi.org/10.1186/s40364-014-0024-xDOI Listing

Publication Analysis

Top Keywords

b-cell lymphomas
20
nk/t cell
12
lymphomas
10
epstein-barr virus
8
virus ebv
8
human lymphoma
8
microbial detection
8
detection array
8
lymphoid tissue
8
lymphomas nk/t
8

Similar Publications

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

CD20 and CD19 promote proliferation driven by the IgM-TLR9-L265P MyD88 complex.

Int Immunol

January 2025

Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo; Minato-ku, Tokyo 108-8639, Japan.

The cancer driver mutation L265P MyD88 is found in approximately 30 % of cases in the activated B cell-like subgroup of diffuse large B cell-like lymphoma (ABC DLBCL). L265P MyD88 forms a complex with TLR9 and IgM, referred to as the My-T-BCR complex, to drive proliferation. We here show that the B cell surface molecules CD19 and CD20 enhance proliferation mediated by the My-T-BCR complex.

View Article and Find Full Text PDF

A more complete map of the pattern of genetic variation among inbred mouse strains is essential for characterizing the genetic architecture of the many available mouse genetic models of important biomedical traits. Although structural variants (SVs) are a major component of genetic variation, they have not been adequately characterized among inbred strains due to methodological limitations. To address this, we generated high-quality long-read sequencing data for 40 inbred strains; and designed a pipeline to optimally identify and validate different types of SVs.

View Article and Find Full Text PDF

Unlabelled: X-linked Lymphoproliferative Syndromes (XLP), which arise from mutations in the or genes, are characterized by the inability to control Epstein-Barr Virus (EBV) infection. While primary EBV infection triggers severe diseases in each, lymphomas occur at high rates with XLP-1 but not with XLP-2. Why XLP-2 patients are apparently protected from EBV-driven lymphomagenesis, in contrast to all other described congenital conditions that result in heightened susceptibility to EBV, remains a key open question.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!