Dynamic regulation of the root hydraulic conductivity of barley plants in response to salinity/osmotic stress.

Plant Cell Physiol

Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan

Published: May 2015

Salinity stress significantly reduces the root hydraulic conductivity (Lpr) of several plant species including barley (Hordeum vulgare). Here we characterized changes in the Lpr of barley plants in response to salinity/osmotic stress in detail using a pressure chamber. Salt-tolerant and intermediate barley cultivars, K305 and Haruna-nijyo, but not a salt-sensitive cultivar, I743, exhibited characteristic time-dependent Lpr changes induced by 100 mM NaCl. An identical response was evoked by isotonic sorbitol, indicating that this phenomenon was triggered by osmotic imbalances. Further examination of this mechanism using barley cv. Haruna-nijyo plants in combination with the use of various inhibitors suggested that various cellular processes such as protein phosphorylation/dephosphorylation and membrane internalization appear to be involved. Interestingly, the three above-mentioned barley cultivars did not exhibit a remarkable difference in root cell sap osmolality under hypertonic conditions, in contrast to the case of Lpr. The possible biological significance of the regulation of Lpr in barley plants upon salinity/osmotic stress is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcv013DOI Listing

Publication Analysis

Top Keywords

barley plants
12
salinity/osmotic stress
12
root hydraulic
8
hydraulic conductivity
8
plants response
8
response salinity/osmotic
8
lpr barley
8
barley cultivars
8
barley
7
lpr
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!