In this article we review Raman studies of defects and dopants in graphene as well as the importance of both for device applications. First a brief overview of Raman spectroscopy of graphene is presented. In the following section we discuss the Raman characterization of three defect types: point defects, edges, and grain boundaries. The next section reviews the dependence of the Raman spectrum on dopants and highlights several common doping techniques. In the final section, several device applications are discussed which exploit doping and defects in graphene. Generally defects degrade the figures of merit for devices, such as carrier mobility and conductivity, whereas doping provides a means to tune the carrier concentration in graphene thereby enabling the engineering of novel material systems. Accurately measuring both the defect density and doping is critical and Raman spectroscopy provides a powerful tool to accomplish this task.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/27/8/083002 | DOI Listing |
Chemistry
January 2025
Brandeis University, Chemistry, 415 South Street,, Waltham, 02453, UNITED STATES OF AMERICA.
We designed and synthesized three diacetylene monomers M1-M3 having two NH2 groups. As anticipated, the NH2 groups aided the preorganization of these monomers by N-H…N hydrogen bonding. In the crystals of monomer M1 and M2, the intermolecular N-H…N hydrogen bonding preorganized the diyne units in an orientation suitable for their topochemical polymerization, but in the case of monomer M3, the distance was slightly larger than that recommended for the topochemical reaction.
View Article and Find Full Text PDFACS EST Air
January 2025
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.
Due to the increased prevalence of plastic pollution globally, atmospheric deposition of microplastics (MPs) is a significant issue that needs to be better understood to identify potential consequences for human health. This study is the first to quantify and characterize atmospheric MP deposition in the Eastern United States. Passive sampling was conducted at two locations within the Eastern United States, specifically in remote South Central Appalachia, from March to September 2023.
View Article and Find Full Text PDFWe introduce and characterize a fast (50 kHz), long range (50 ps) and random-access optical delay line based on an acousto-optic deflector inserted in the Fourier plane of a zero-dispersion line. The advantages of this agile delay line are demonstrated in the context of impulsive stimulated Raman imaging in the low-frequency range (<200 cm). Besides fast imaging with a spectral resolution of 1.
View Article and Find Full Text PDFMetasurfaces offer a powerful tool to realize label-free and highly sensitive Raman spectroscopy. Embedding metasurfaces into microfluidic channels is promising to establish a new characterizing platform for microfluids. In this Letter, we present a highly stable method for improving the Raman scattering intensity of biological microfluids by using a microfluidic chip embedded with a plasmonic metasurface.
View Article and Find Full Text PDFPLoS One
January 2025
Dipartimento di Architettura, University of Naples Federico II, Naples, Italy.
A key challenge in the art and archaeological field is the instrumental analysis of objects and materials while preserving their integrity. In this study, the world-renowned artwork Alexander Mosaic (The Issus Battle, collection of the National Archaeological Museum of Naples, IT), the most iconic representation of the face of the Macedonian king Alexander the Great coming from a Pompeii domus, was thoroughly analyzed with mobile and non-invasive methods, within a great project of restoration started in 2020. Representative areas of the Mosaic, overall consisting of ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!