Human amniotic membrane (HAM) has useful properties as a dermal matrix substitute. The objective of our work was to obtain, using different enzymatic or chemical treatments to eliminate cells, a scaffold of acellular HAM for later use as a support for the development of a skin equivalent. The HAM was separated from the chorion, incubated and cryopreserved. The membrane underwent different enzymatic and chemical treatments to eliminate the cells. Fibroblasts and keratinocytes were separately obtained from skin biopsies of patients following a sequential double digestion with first collagenase and then trypsin-EDTA (T/E). A skin equivalent was then constructed by seeding keratinocytes on the epithelial side and fibroblasts on the chorionic side of the decellularizated HAM. Histological, immunohistochemical, inmunofluorescent and molecular biology studies were performed. Treatment with 1% T/E at 37 °C for 30 min totally removed epithelial and mesenchymal cells. The HAM thus treated proved to be a good matrix to support adherence of cells and allowed the achievement of an integral and intact scaffold for development of a skin equivalent, which could be useful as a skin substitute for clinical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10561-014-9485-2 | DOI Listing |
Sensors (Basel)
January 2025
Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China.
The objective identification of depression using physiological data has emerged as a significant research focus within the field of psychiatry. The advancement of wearable physiological measurement devices has opened new avenues for the identification of individuals with depression in everyday-life contexts. Compared to other objective measurement methods, wearables offer the potential for continuous, unobtrusive monitoring, which can capture subtle physiological changes indicative of depressive states.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Unilever R&D Shanghai, 66 Lin Xin Road, Linkong Economic Development Zone, Shanghai 200335, China.
The skin acts as the first line of defense against various environmental stressors, such as solar ultraviolet radiation, visible light, pollution particles and ozone. Simultaneous exposure to different stressors is common in everyday life but has been less studied than exposure to single stressors. Herein, the combined effects of a chemical pollutant (ozone) and a UV radiation stressor (UVSSR) were investigated on a 3D pigmented living skin equivalent model.
View Article and Find Full Text PDFCytotherapy
December 2024
School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand. Electronic address:
Background: One of the key functions of human skin is to provide a barrier, protecting the body from the surrounding environment and maintaining homeostasis of the internal environment. A mature, stratified epidermis is critical to achieve skin barrier function and is particularly important when producing skin grafts in vitro for wound treatment. For decades epidermal stratification has been achieved in vitro by culturing keratinocytes at an air-liquid interface, triggering proliferating basal keratinocytes to differentiate and form all epidermal layers.
View Article and Find Full Text PDFCell Death Dis
January 2025
Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany.
Arachidonate 15-lipoxygenase type B (ALOX15B) peroxidises polyunsaturated fatty acids to their corresponding fatty acid hydroperoxides, which are subsequently reduced into hydroxy-fatty acids. A dysregulated abundance of these biological lipid mediators has been reported in the skin and blood of psoriatic compared to healthy individuals. RNAscope and immunohistochemistry revealed increased ALOX15B expression in lesional psoriasis samples.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Nanosafety Group, International Iberian Nanotechnology Laboratory Braga Portugal
In alignment with the global movement toward reducing animal testing, several reconstructed human epidermis (RHE) models have been created for conducting skin irritation tests. These models have undergone development, verification, validation, and integration into OECD TG 439. Our team has introduced a novel in-house RHE named GB-RHE, and we adhere to OECD TG 439 to pre-validate the model and test its potential employment for nanoparticle irritation studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!