Suspending effect on low-frequency charge noise in graphene quantum dot.

Sci Rep

1] Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei, Anhui 230026, China [2] Synergetic Innovation Center of Quantum Information &Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Published: January 2015

Charge noise is critical in the performance of gate-controlled quantum dots (QDs). Such information is not yet available for QDs made out of the new material graphene, where both substrate and edge states are known to have important effects. Here we show the 1/f noise for a microscopic graphene QD is substantially larger than that for a macroscopic graphene field-effect transistor (FET), increasing linearly with temperature. To understand its origin, we suspended the graphene QD above the substrate. In contrast to large area graphene FETs, we find that a suspended graphene QD has an almost-identical noise level as an unsuspended one. Tracking noise levels around the Coulomb blockade peak as a function of gate voltage yields potential fluctuations of order 1 μeV, almost one order larger than in GaAs/GaAlAs QDs. Edge states and surface impurities rather than substrate-induced disorders, appear to dominate the 1/f noise, thus affecting the coherency of graphene nano-devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311243PMC
http://dx.doi.org/10.1038/srep08142DOI Listing

Publication Analysis

Top Keywords

charge noise
8
graphene
8
graphene substrate
8
edge states
8
1/f noise
8
suspended graphene
8
noise
6
suspending low-frequency
4
low-frequency charge
4
noise graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!