A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Targeting of Runx2 by miR-135 and miR-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease. | LitMetric

Targeting of Runx2 by miR-135 and miR-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease.

Cancer Res

Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts. Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont.

Published: April 2015

Progression of breast cancer to metastatic bone disease is linked to deregulated expression of the transcription factor Runx2. Therefore, our goal was to evaluate the potential for clinical use of Runx2-targeting miRNAs to reduce tumor growth and bone metastatic burden. Expression analysis of a panel of miRNAs regulating Runx2 revealed a reciprocal relationship between the abundance of Runx2 protein and two miRNAs, miR-135 and miR-203. These miRNAs are highly expressed in normal breast epithelial cells where Runx2 is not detected, and absent in metastatic breast cancer cells and tissue biopsies that express Runx2. Reconstituting metastatic MDA-MB-231-luc cells with miR-135 and miR-203 reduced the abundance of Runx2 and expression of the metastasis-promoting Runx2 target genes IL11, MMP-13, and PTHrP. In addition, tumor cell viability was decreased and migration suppressed in vitro. Orthotopic implantation of MDA-MB-231-luc cells delivered with miR-135 or miR-203, followed by an intratumoral administration of the synthetic miRNAs, reduced the tumor growth and spontaneous metastasis to bone. Furthermore, intratibial injection of these miRNA-delivered cells impaired tumor growth in the bone environment and inhibited bone resorption. Importantly, reconstitution of Runx2 in MDA-MB-231-luc cells delivered with miR-135 and miR-203 reversed the inhibitory effect of the miRNAs on tumor growth and metastasis. Thus, we have identified that aberrant expression of Runx2 in aggressive tumor cells is related to the loss of specific Runx2-targeting miRNAs and that a clinically relevant replacement strategy by delivery of synthetic miRNAs is a candidate for a therapeutic approach to prevent metastatic bone disease by this route.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383679PMC
http://dx.doi.org/10.1158/0008-5472.CAN-14-1026DOI Listing

Publication Analysis

Top Keywords

mir-135 mir-203
20
tumor growth
16
breast cancer
12
metastatic bone
12
bone disease
12
mda-mb-231-luc cells
12
runx2
9
progression breast
8
cancer metastatic
8
mirnas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!