Small luminescent molecular probes based on the iridium(III) complex BTP, (btp)2Ir(acac) (btp = benzothienylpyridine, acac = acetylacetone) have been developed for sensing intracellular and in vivo O2. These compounds are BTPSA (containing an anionic carboxyl group), BTPNH2 (containing a cationic amino group), and BTPDM1 (containing a cationic dimethylamino group); all substituents are incorporated into the ancillary acetylacetonato ligand of BTP. Introduction of the cationic dimethylamino group resulted in an almost 20-fold increase in cellular uptake efficiency of BTPDM1 by HeLa cells compared with BTP. The phosphorescence intensity of BTPDM1 internalized in living cells provided a visual representation of the O2 gradient produced by placing a coverslip over cultured monolayer cells. The intracellular O2 levels (pO2) inside and outside the edge of the coverslip could be evaluated by measuring the phosphorescence lifetime of BTPDM1. Furthermore, intravenous administration of 25 nmol BTPDM1 to tumor-bearing mice allowed the tumor region to be visualized by BTPDM1 phosphorescence. The lifetime of BTPDM1 phosphorescence from tumor regions was much longer than that from extratumor regions, thereby demonstrating tumor hypoxia (pO2 = 6.1 mmHg for tumor and 50 mmHg for extratumor epidermal tissue). Tissue distribution studies showed that 2 h after injection of BTPDM1 into a mouse, the highest distribution was in liver and kidney, while after 24 h, BTPDM1 was excreted in the feces. These results demonstrate that BTPDM1 can be used as a small molecular probe for measuring intracellular O2 levels in both cultured cells and specific tissues and organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac5040067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!