AFM characterization of chemically treated corneal cells.

Anal Bioanal Chem

Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, G1-13 4259 Nagatusta Midori-ku, Yokohama, 226-8502, Kanagawa, Japan.

Published: March 2015

We present a characterization of chemically treated cells using atomic force microscopy (AFM) which can observe changes in morphology and elasticity of cells. Since AFM has the significant advantage that it does not require fixation of samples, the method is simple and can capture various properties of living cells. In this study, corneal epithelial and endothelial cells were examined. The topography images of the corneal cells without glutaraldehyde (GA) fixation were successfully obtained. The images showed a natural three-dimensional shape of these cells, which scanning electron microscope (SEM) images could not provide. The AFM images of GA-fixed cells were taken and compared with a SEM image reported in the literature. Our results show that longer time for GA fixation makes the surface of the corneal endothelial tissue stiffer. Also, longer treatment results in relatively large structural variation in samples. Combined with conventional histochemical methods, this approach helps us gain an overall understanding of the influence of such chemical treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-015-8473-0DOI Listing

Publication Analysis

Top Keywords

characterization chemically
8
chemically treated
8
cells
8
corneal cells
8
afm
4
afm characterization
4
corneal
4
treated corneal
4
cells characterization
4
treated cells
4

Similar Publications

The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.

View Article and Find Full Text PDF

Bimetallic metal-organic frameworks as electrode modifiers for enhanced electrochemical sensing of chloramphenicol.

Mikrochim Acta

January 2025

Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.

An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with  their monometallic counterparts due to the strong synergistic effect between bimetals.

View Article and Find Full Text PDF

Diabetic wounds with chronic infections present a significant challenge, exacerbated by the growing issue of antimicrobial resistance, which often leads to delayed healing and increased morbidity. This study introduces a novel silver-zinc oxide-eugenol (Ag+ZnO+EU) nanocomposite, specifically designed to enhance antimicrobial activity and promote wound healing. The nanocomposite was thoroughly characterized using advanced analytical techniques, confirming its nanoscale structure, stability and chemical composition.

View Article and Find Full Text PDF

Active targeting of type 1 diabetes therapies to pancreatic beta cells using nanocarriers.

Diabetologia

January 2025

Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA.

Type 1 diabetes is an autoimmune disease characterised by the destruction of pancreatic beta cells, resulting in lifelong insulin dependence. Although exogenous insulin can maintain glycaemic control, this approach does not protect residual or replacement pancreatic beta cells from immune-mediated death. Current therapeutics designed to protect functional beta cell mass or promote beta cell proliferation and regeneration can have off-target effects, resulting in higher dose requirements and adverse side effects.

View Article and Find Full Text PDF

Hexabromocyclododecane (HBCD) is a brominated flame retardant, that is added, but not chemically bonded, to consumer products. HBCD is sold as a commercial-grade HBCD mixture containing three major stereoisomers: alpha (α), beta (β), and gamma (γ), with relative amounts of 12% for α-HBCD, 6% for β-HBCD, and 82% for γ-HBCD. HBCDs are widely measured in the environment and in biological matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!