Background: The discovery of cancer stem cells and tumor heterogeneity prompted the exploration of additional mechanisms aside from genetic mutations for carcinogenesis and cancer progression. The aim of the present study was to investigate the effect of cell fusion between mesenchymal stem cells and the gastric epithelial cells in tumorigenesis.

Methods: Cell fusion between cord blood mesenchymal stem cells and human gastric epithelial cells was performed in vitro. Cell scratch and transwell assays were performed to determine migration and invasion abilities of the hybrids. The expressions of epithelial-mesenchymal transition-related proteins and genes were analyzed by immunocytochemistry and real time quantitative PCR. Tumorigenesis of the hybrids was evaluated through in vivo inoculation in nude mice.

Results: Hybrids expressed the phenotypes of both donor cells. Aneuploidy was observed in 84.1% of cells. The hybrids showed increased proliferation, migration and invasion abilities compared with the parental cells. In addition, the expression of N-cadherin and vimentin in the hybrids was significantly higher than that of the epithelial cells, and the mRNA expression of the epithelial-mesenchymal transition-related genes, Twist and Slug, in the hybrids was also increased compared with that of the parental epithelial cells. Furthermore, the hybrids formed masses of epithelial origin with glandular structures in BALB/c nude mice.

Conclusions: These findings suggest that cell fusion between gastric epithelial cells and mesenchymal stem cells may result in epithelial to mesenchymal transition and malignant transformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318156PMC
http://dx.doi.org/10.1186/s12885-015-1027-1DOI Listing

Publication Analysis

Top Keywords

epithelial cells
24
stem cells
20
cell fusion
16
gastric epithelial
16
mesenchymal stem
16
cells
14
fusion gastric
8
epithelial
8
cells mesenchymal
8
transition malignant
8

Similar Publications

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.

View Article and Find Full Text PDF

Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.

View Article and Find Full Text PDF

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!