A critical challenge for the integration of optoelectronics is that photodetectors have relatively poor sensitivities at the nanometer scale. Generally, a large electrodes spacing in photodetectors is required to absorb sufficient light to maintain high photoresponsivity and reduce the dark current. However, this will limit the optoelectronic integration density. Through spatially resolved photocurrent investigation, we find that the photocurrent in metal-semiconductor-metal (MSM) photodetectors based on layered GaSe is mainly generated from the region close to the metal-GaSe interface with higher electrical potential. The photoresponsivity monotonically increases with shrinking the spacing distance before the direct tunneling happens, which was significantly enhanced up to 5,000 AW(-1) for the bottom Ti/Au contacted device. It is more than 1,700-fold improvement over the previously reported results. The response time of the Ti/Au contacted devices is about 10-20 ms and reduced down to 270 μs for the devices with single layer graphene as metallic electrodes. A theoretical model has been developed to well explain the photoresponsivity for these two types of device configurations. Our findings realize reducing the size and improving the performance of 2D semiconductor based MSM photodetectors simultaneously, which could pave the way for future high density integration of optoelectronics with high performances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311250PMC
http://dx.doi.org/10.1038/srep08130DOI Listing

Publication Analysis

Top Keywords

electrodes spacing
8
integration optoelectronics
8
msm photodetectors
8
ti/au contacted
8
photodetectors
5
strong enhancement
4
photoresponsivity
4
enhancement photoresponsivity
4
photoresponsivity shrinking
4
shrinking electrodes
4

Similar Publications

Manganese dioxide (MnO) is a well-known pseudocapacitive material that has been extensively studied and highly regarded, especially in supercapacitors, due to its remarkable surface redox behavior, leading to a high specific capacitance. However, its full potential is impeded by inherent characteristics such as its low electrical conductivity, dense morphology, and hindered ionic diffusion, resulting in limited rate capability in supercapacitors. Addressing this issue often requires complicated strategies and procedures, such as designing sophisticated composite architectures.

View Article and Find Full Text PDF

Modeling of Electric Field and Dielectrophoretic Force in a Parallel-Plate Cell Separation Device with an Electrode Lid and Analytical Formulation Using Fourier Series.

Sensors (Basel)

December 2024

Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.

Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.

View Article and Find Full Text PDF

Enhancing electrochemical performance of lignin-based carbon fibrous aerogels via boron doping.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Self-supported hardwood kraft lignin (HKL)/graphene-based carbon fibrous aerogel (L/GCA) presents a fascinating prospect as the electrode of supercapacitor due to its impress rate capacity and cyclic stability. However, the hydrophobicity nature of L/GCA hampers the ion transfer between the electrode and electrolyte, thereby limiting its electrochemical performance. To address this, we enhanced the electrochemical performance of L/GCA through boron doping based on the improvement of hydrophilicity and the re-arrangement of electron density.

View Article and Find Full Text PDF

For batteries to function effectively all active material must be accessible requiring both electron and ion transport to each particle. A common approach to generating the needed conductive network is the addition of carbon. An alternative approach is the electrochemically induced formation of conductive reaction products generated with intimate contact to the active material.

View Article and Find Full Text PDF

Microscale Electrical Resistivity Measurements to Investigate Particle Distribution.

Langmuir

January 2025

Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States.

The functional performance of a particulate thin film depends greatly on the particle distribution that forms during drying. In situ methods for monitoring the impact of different processing parameters on the distribution of particles currently require expensive and specialized equipment. This work addresses this gap by miniaturizing a geophysical prospecting method to thin-film applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!