Background: Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We used this technique in an attempt to identify novel genes underlying monogenic dyslipidemias.
Methods And Results: We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein cholesterol (after candidate gene sequencing excluded known genetic causes for high low-density lipoprotein cholesterol families) or high-density lipoprotein cholesterol. We used standard analytic approaches to identify candidate variants and also assigned a polygenic score to each individual to account for their burden of common genetic variants known to influence lipid levels. In 9 families, we identified likely pathogenic variants in known lipid genes (ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify obvious genetic etiologies in the remaining 32 families, despite follow-up analyses. We identified 3 factors that limited novel gene discovery: (1) imperfect sequencing coverage across the exome hid potentially causal variants; (2) large numbers of shared rare alleles within families obfuscated causal variant identification; and (3) individuals from 15% of families carried a significant burden of common lipid-related alleles, suggesting complex inheritance can masquerade as monogenic disease.
Conclusions: We identified the genetic basis of disease in 9 of 41 families; however, none of these represented novel gene discoveries. Our results highlight the promise and limitations of exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering the confounders identified may inform the design of future exome sequencing studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406825 | PMC |
http://dx.doi.org/10.1161/CIRCGENETICS.114.000776 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!