AI Article Synopsis

  • Scientists are studying a special type of thin-film material called CoFe/BiFeO3 that can change its magnetic properties when an electric field is applied.
  • They used advanced techniques to see how the magnetism in these materials can be controlled and switched around 180 degrees just by using electricity.
  • This research could lead to better, more efficient devices that use electricity to change magnetism for things like communication technology.

Article Abstract

Exchange coupled CoFe/BiFeO3 thin-film heterostructures show great promise for power-efficient electric field-induced 180° magnetization switching. However, the coupling mechanism and precise qualification of the exchange coupling in CoFe/BiFeO3 heterostructures have been elusive. Here we show direct evidence for electric field control of the magnetic state in exchange coupled CoFe/BiFeO3 through electric field-dependent ferromagnetic resonance spectroscopy and nanoscale spatially resolved magnetic imaging. Scanning electron microscopy with polarization analysis images reveal the coupling of the magnetization in the CoFe layer to the canted moment in the BiFeO3 layer. Electric field-dependent ferromagnetic resonance measurements quantify the exchange coupling strength and reveal that the CoFe magnetization is directly and reversibly modulated by the applied electric field through a ~180° switching of the canted moment in BiFeO3. This constitutes an important step towards robust repeatable and non-volatile voltage-induced 180° magnetization switching in thin-film multiferroic heterostructures and tunable RF/microwave devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms7082DOI Listing

Publication Analysis

Top Keywords

electric field
12
ferromagnetic resonance
12
field control
8
exchange coupled
8
coupled cofe/bifeo3
8
180° magnetization
8
magnetization switching
8
exchange coupling
8
electric field-dependent
8
field-dependent ferromagnetic
8

Similar Publications

Background: During last ten years, we have developed a digital library with educational materials in Physical medicine and rehabilitation.

Objectives: The objective of current article is the preparation of an electronic library with educational materials in the area of physical medicine, physical therapy and rehabilitation, and the comparative evaluation of the impact of this repository on the quality of education of students and trainees in the field.

Methodology: The electronic library includes e-books on different topics, elements of the specialty "Physical and rehabilitation medicine (PRM)" or Physiatry - with theoretical data, practical issues and case reports with videos of real patients.

View Article and Find Full Text PDF

This study presents the characterization of a novel multilayered three-dimensional (3D) polymer exhibiting aggregation-induced emission (AIE) properties when excited at a low wavelength of 280 nm. Utilizing fluorescence spectroscopy, we demonstrate that the polymer displays a marked enhancement in luminescence upon aggregation, a characteristic behavior that distinguishes AIE-active materials from conventional fluorophores. Furthermore, we explore the potential application of this multilayered 3D polymer as a fluorescent probe for the selective detection of specified metal ions.

View Article and Find Full Text PDF

Perovskite solar cells are commonly employed in photovoltaic systems because of their special characteristics. Perovskite solar cells remain efficient, but lead-based absorbers are dangerous, restricting their manufacture. Therefore, studies in the field of perovskite materials are now focusing on investigating lead-free perovskites.

View Article and Find Full Text PDF

Advanced wood-inorganic composites: preparation, properties and perspectives.

Mater Horiz

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.

In recent years, the widespread use of wood products has been observed in many fields. Wooden products have excellent green and environmentally friendly characteristics, but their performance often cannot meet people's needs. Many researchers have conducted in-depth research on wood-based composite materials and their modification methods in order to improve the performance of wood.

View Article and Find Full Text PDF

Effect of induced electric field treatment on structural and physicochemical properties of wheat bran to enhance soluble dietary fiber content.

Food Res Int

February 2025

Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.

Improving the content and physicochemical properties of soluble dietary fiber (SDF) in wheat bran (WB) is conducive to enhancing the palatability and processing adaptability of bran-containing products. In this study, induced electric field (IEF) was employed for the modification of WB. The IEF modification conditions were optimized, and the effects on the structural and physicochemical properties of WB and its SDF were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!