The role of nanostructures and hydrophilicity in osseointegration: In-vitro protein-adsorption and blood-interaction studies.

J Biomed Mater Res A

Department Materials meet Life, Laboratory for Materials Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.

Published: August 2015

Protein adsorption and blood coagulation play important roles in the early stages of osseointegration and are strongly influenced by surface properties. We present a systematic investigation of the influence of different surface properties on the adsorption of the blood proteins fibrinogen and fibronectin and the degree of early blood coagulation. Experiments on custom-made and commercially available, microroughened hydrophobic titanium (Ti) surfaces (Ti SLA-Hphob ), hydrophilic (Hphil ) microroughened Ti surfaces with nanostructures (Ti SLActive-Hphil NS), and on bimetallic Ti zirconium alloy (TiZr, Roxolid®) samples were performed, to study the biological response in relation to the surface wettability and the presence of nanostructures (NS). Protein adsorption on the different substrates showed a highly significant effect of surface NS. Hydrophilicity alone did not significantly enhance protein adsorption. Overall, the combination of NS and hydrophilicity led to the highest adsorption levels; independent of whether Ti or TiZr were used. Hydrophilicity induced a strong effect on blood coagulation, whereas the effect of NS alone was weak. The combination of both surface characteristics led to early and most pronounced blood-coagulation. Therefore, nanostructured, hydrophilic Ti and TiZr surfaces may perform better in terms of osseointegration due to continuous protein adsorption and the formation of a layer of blood components on the implant surface.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.35401DOI Listing

Publication Analysis

Top Keywords

protein adsorption
16
blood coagulation
12
adsorption blood
8
surface properties
8
adsorption
6
surface
6
blood
5
role nanostructures
4
hydrophilicity
4
nanostructures hydrophilicity
4

Similar Publications

Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types.

View Article and Find Full Text PDF

Gelatinase-responsive core-shell nanofiber membranes for anti-adhesion applications.

Int J Biol Macromol

January 2025

MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

Dressings are prone to adhering to new tissues, leading to secondary harm to the wound during dressing replacement. To address this issue, many strategies have been proposed to endow dressings with anti-adhesive functions. However, the introduction of exogenous agents or stimuli is always needed, and difficulty in achieving adaptive removal is also present.

View Article and Find Full Text PDF

α-Synuclein interaction with POPC/POPS vesicles.

Soft Matter

January 2025

Physical Chemistry, Chemistry Centre, Lund University, SE-22100 Lund, Sweden.

We have investigated the adsorption of the amyloid-forming protein α-Synuclein (αSyn) onto small unilamellar vesicles composed of a mixture of zwitterionic POPC and anionic POPS lipids. αSyn monomers adsorb onto the anionic lipid vesicles where they adopt an α-helical secondary structure. The degree of adsorption depends on the fraction of anionic lipid in the mixed lipid membrane, but one needs to consider the electrostatic shift of the serine p with increasing fraction of POPS.

View Article and Find Full Text PDF

Emerging and legacy organophosphate flame retardants in the tropical estuarine food web: Do they exhibit similar bioaccumulation patterns, trophic partitioning and dietary exposure?

Water Res X

May 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.

View Article and Find Full Text PDF

Fabrication of phospholipid polymer-modified alginate hydrogels for bioartificial pancreas.

J Biosci Bioeng

January 2025

Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. Electronic address:

The bioartificial pancreas, composed of a semi-permeable hydrogel encapsulating insulin-secreting cells, has attracted attention as a treatment for type 1 diabetes. In this study, we developed phospholipid polymer-modified alginate hydrogel beads that encapsulated spheroids of the pancreatic beta cell line MIN6. The hydrogel beads were composed of methacrylated alginic acid, which enabled both ionic and covalent cross-linking, resulting in a hydrogel that was more stable than conventional alginate hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!