A new analytical method has been developed for the quantitative determination of ethylene glycol-containing nonionic surfactants, such as polyethylene glycol 8000, polysorbate 80, and Pluronic F-68. These surfactants are commonly used in pharmaceutical protein preparations, thus, testing in the presence of protein is required. This method is based on the capillary gas chromatographic analysis of ethylene glycol diacetate formed by hydrolysis and acetylation of surfactants that contain ethylene glycol. Protein samples containing free surfactants were hydrolyzed and acetylated with acetic anhydride in the presence of p-toluene sulfonic acid. Acetylated ethylene glycol was extracted with dichloromethane and analyzed by gas chromatography using a flame ionization detector. The amount of nonionic surfactant in the sample was determined by comparing the released ethylene glycol diacetate signal to that measured from calibration standards. The limits of quantitation of the method were 5.0 μg/mL for polyethylene glycol 8000 and Pluronic F-68, and 50 μg/mL for polysorbate 80. This method can be applied to determine the polyethylene glycol content in PEGylated proteins or the final concentration of polysorbate 80 in a protein drug in a quality control environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024075 | PMC |
http://dx.doi.org/10.1002/jssc.201400766 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
South China University of Technology, Faculty of Materials Science and Engineering, 381 Wushan Road, 510641, Guangzhou, CHINA.
Amide groups occur extensively in natural and synthetic polymers cultivating their vital roles in biological and industrial worlds. We report here an efficient and controlled pathway to amide-functionalized polyethers through ring-opening polymerization (ROP) of commercially available ethyl glycidate followed by amidation of the pendant ester groups. Transesterification is inhibited during the ROP by use of a two-component organocatalyst.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
Cold isostatic pressing, gel casting, and protein coagulation are the most common techniques to produce green bodies prior to computer numerical control (CNC)-based machining for the near-net-scale shaping of ceramics. These methods typically involve various additives and entail several steps to create a green body that is capable of withstanding machining forces. Here, utilizing a single additive, we first introduced a facile benchtop method to generate self-standing, malleable doughs of alumina in under 2 min.
View Article and Find Full Text PDFSensors (Basel)
December 2024
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
Owing to its extensive use and intrinsic toxicity, NH detection is very crucial. Moisture can cause significant interference in the performance of sensors, and detecting NH in high humidity is still a challenge. In this work, a humidity-activated NH sensor was prepared by urocanic acid (URA) modifying poly (ethylene glycol) diacrylate (PEGDA) via a thiol-ene click cross-linking reaction.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Limited Liability Partnership «Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan», Karaganda 100008, Kazakhstan.
Zinc-imprinted polymer (ZnIP) and non-imprinted polymer (NIP) were synthesized by radical polymerization, and their properties were studied. The novelty of the work lies in the use of humic acids isolated from coals of the Shubarkol deposit (Karaganda, Kazakhstan) as a basis for the imprinted polymer matrix, with methacrylic acid and ethylene glycol dimethacrylate as a functional monomer and a cross-linking agent, respectively. The composition and structure of ZnIP and NIP were characterized using various physicochemical methods.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Research Laboratory "New Polymeric Materials", Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia.
Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!