An effective non-covalent grafting approach to functionalize individually dispersed reduced graphene oxide sheets with high grafting density, solubility and electrical conductivity.

Nanoscale

Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: February 2015

AI Article Synopsis

  • Polymer-functionalized reduced graphene oxide (polymer-FG) is created using a straightforward method that enhances the production of nanomaterials with diverse applications.
  • The approach employs a pyrene-terminal polymer in benzoyl alcohol, serving both as a dispersion medium and a reducing agent for converting graphene oxide to reduced graphene oxide (RGO) efficiently.
  • The resulting polymer-FG exhibits excellent dispersibility, electrical conductivity, and processability, positioning it as a viable option for use in electrochemical devices and polymer nanocomposites.

Article Abstract

Polymer-functionalized reduced graphene oxide (polymer-FG), produced as individually dispersed graphene sheets, offers new possibilities for the production of nanomaterials that are useful for a broad range of potential applications. Although non-covalent functionalization has produced graphene with good dispersibility and a relatively complete conjugated network, there are few reports related to the effective functionalization of reduced graphene oxide (RGO) using a simple, general method. Herein, we report a facile and effective approach for the preparation of polymer-FG from a non-covalently functionalized pyrene-terminal polymer in benzoyl alcohol (BnOH). This aromatic alcohol (BnOH) was used as the liquid medium for the dispersion of graphene oxide (GO) with a pyrene-terminal polymer, and as an effective reductant; this makes the synthesis procedure convenient and the production of polymer-FG easily scalable because the conversion of GO to RGO and the non-covalent functionalization proceed simultaneously. The resulting polymer-FG sheets show organo-dispersibility, high electrical conductivity and good processability, and have a similar grafting density comparable to covalently made materials, thus making them promising candidates for applications such as electrochemical devices, nanomaterials and polymer nanocomposites. Hence, this work provides a general methodology for preparing individually dispersed graphene sheets with desirable properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr06710jDOI Listing

Publication Analysis

Top Keywords

graphene oxide
16
individually dispersed
12
reduced graphene
12
grafting density
8
electrical conductivity
8
dispersed graphene
8
graphene sheets
8
non-covalent functionalization
8
pyrene-terminal polymer
8
alcohol bnoh
8

Similar Publications

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

The NiCoO Nanosheets@Carbon fibers composites have been successfully synthesized by a facile co-electrodeposition process. The mesoporous NiCoO nanosheets aligned vertically on the surface of carbon fibers and crosslinked with each other, producing loosely porous nanostructures. These hybrid composite electrodes exhibit high specific capacitance in a three-electrode cell.

View Article and Find Full Text PDF

This work focuses on the incorporation of 2D carbon nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs), into polypropylene (PP) via melt mixing. The addition of these 2D carbon nanostructured networks offers a novel approach to enhancing/controlling the water vapor permeable capabilities of PP composite membranes, widely used in industrial applications, such as technical (building roof membranes) or medical (surgical gowns) textiles. The study investigates how the dispersion and concentration of these graphene nanomaterials within the PP matrix influence the microstructure and water vapor permeability (WVP) performance.

View Article and Find Full Text PDF

Prostate cancer antigen 3 (PCA3) has emerged as a critical biomarker for the early detection of prostate cancer, complementing the traditional prostate-specific antigen (PSA) testing. This research presents a novel resistive sensor based on reduced graphene oxide (RGO) functionalized with glutaraldehyde (GA)/complementary single-stranded DNA (ss-DNA) for the detection of the PCA3 RNA. The device was meticulously characterized at each fabrication step to confirm the successful integration of the various layers on the sensor device, utilizing atomic force microscopy (AFM) which confirmed the increase in the thickness of the sensor from ∼1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!