Colloidal quantum dots (CQDs) can be used in conjunction with organic charge-transporting layers to produce light-emitting diodes, solar cells and other devices. The efficacy of CQDs in these applications is reduced by the non-radiative recombination associated with surface traps. Here we investigate the effect on the recombination dynamics in CdTe CQDs of the passivation of these surface traps by chloride ions. Radiative recombination dominates in these passivated CQDs, with the radiative lifetime scaling linearly with CQD volume over τr =20-55 ns. Before chloride passivation or after exposure to air, two non-radiative components are also observed in the recombination transients, with sample-dependent lifetimes typically of less than 1 ns and a few ns. The non-radiative dynamics can be explained by Auger-mediated trapping of holes and the lifetimes of this process calculated by an atomistic model are in agreement with experimental values if assuming surface oxidation of the CQDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501323 | PMC |
http://dx.doi.org/10.1002/cphc.201402753 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
The power conversion efficiency (PCE) of perovskite solar cells is sensitive to their method of fabrication as well as the combination of materials in the perovskite layer. Air knife-assisted blade coating enables good quality perovskite films to be formed but the device efficiencies still tend to lag behind those fabricated using spin-coated perovskite layers. Herein we report the use of three 2,3,4,5,6-pentafluorophenylethylammonium halides (FEAX, where X = I, Br or Cl) as additives in nitrogen knife-assisted blade-coated methylammonium lead iodide (MAPbI) perovskite solar cells.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
Electrochemical tests combined with surface characterization techniques were used to investigate the corrosion evolution of passivated Q355B steel under the dual action of pH and chloride. The results show that the Q355B passivation film in simulated concrete pore solution is the amorphous oxide layer, and pH and Cl have closely coupled effects on Q355B corrosion. Meanwhile, the impact of pH is more significant: the decrease in pH shifts from pitting to uniform corrosion.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
The rapidly increased efficiency of perovskite solar cells (PSCs) indicates their broad commercial prospects, but the commercialization of perovskite faces complex optimization processes and stability issues. In this work, a simple optimized strategy is developed by the addition of trimethylgermanium chloride (TGC) into FACsPbI precursor solution. TGC triggers the successive interactions in perovskite solution and film, involving the hydrolysis of vulnerable Ge─Cl bond forming Ge─OH group, then forming the hydrogen bonds (O─H···N and O─H···I) with FAI.
View Article and Find Full Text PDFSmall
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
Currently, the power conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) is still limited by reduced open-circuit voltage (V), due to defect-induced charge recombination. Most studies focus on defect passivation and improving carrier transport through introducing passivating molecules or macroscopic physical fields. Herein, to mitigate energy level mismatch and recombination losses induced by interface defects, an interface electric-field passivation is introduced, employing the ordered arrangement of the dipole molecule benzenesulfonyl chloride (BC).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Materials Science and Engineering, Andong National University, 1375 Gyeongdong-ro, Andong 36729, Gyeongbuk, Republic of Korea.
Duplex stainless steels, known for their excellent corrosion resistance, are employed in a variety of chloride solutions-acidic, neutral, and alkaline-due to a stable passive film that forms on their surfaces. This study involved polarization tests, EIS (Electrochemical Impedance Spectroscopy) measurements, Mott-Schottky plots, and XPS (X-Ray Photoelectron Spectroscopy) analyses in both static and dynamic conditions across acidic (1NaCl + 0.1N HCl, pH 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!