Co-introduction and colonization of parasites with the introduction of new host species into aquatic habitats may depend on the host specificity and dispersal capabilities of the parasites. We compared the metazoan parasite community of an introduced three-spined stickleback (Gasterosteus aculeatus) population with that of the nearby source population in subarctic Norway. As expected from a small spatial scale (5 km), the parasite component communities in the two lakes were highly similar. All identifiable allogenic parasite taxa (Diphyllobothrium dendriticum, Diphyllobothrium ditremum, Diphyllobothrium spp., Schistocephalus solidus, Apatemon sp. and Diplostomum spp.) were also observed in both lakes while inter-lake differences were driven by autogenic parasite taxa (Eubothrium spp., Crepidostomum spp., Nematoda spp., Proteocephalus sp. and Gyrodactylus arcuatus). Contrary to expectation, the total number of parasite taxa was higher in the introduced stickleback population (12) compared to that found in the source population (9) with three parasite taxa (Eubothrium spp., Crepidostomum spp., Nematoda spp.) only occurring in the introduced population. These parasites were uncommon however and normally restricted to salmonids. Sticklebacks from both populations were heavily infected, particularly with eye-infecting metacercariae. Sequences from the DNA barcode region of cytochrome oxidase 1 indicated that these include Diplostomum lineage 6, a member of the Diplostomum baeri complex and a member of the Strigeinae. Despite high similarity between the two component communities, quantitative inter-lake differences were found at the infracommunity level. At this scale, parasite intensity was significantly higher in the source population for the two autogenic stickleback specialists: G. arcuatus and Proteocephalus sp., assumed to be the autogenic stickleback specialist Proteocephalus filicollis. Parasite infracommunities within each lake also resembled each other significantly more than infracommunities between lakes, primarily driven by the allogenic cestode D. ditremum, as well as G. arcuatus and Proteocephalus sp. Overall, quantitative dissimilarities between the two parasite communities were possibly explained by inter-lake differences in the density of sticklebacks and intermediate hosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00436-015-4309-2 | DOI Listing |
Infect Genet Evol
January 2025
Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
Infections with the liver fluke (Fasciola hepatica) cause economic losses in cattle production worldwide. Also, infections with rumen flukes (Calicophoron/Paramphistomum spp.) are gaining importance in grazing cattle in Europe.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
is a common intracellular bacterial genus that infects numerous arthropods and filarial nematodes. In arthropods, it typically acts as a reproductive parasite, leading to various phenotypic effects such as cytoplasmic incompatibility, parthenogenesis, feminization, or male-killing. Quill mites (Acariformes: Syringophilidae) are a group of bird parasites that have recently attracted increasing interest due to the detection of unique phylogenetic lineages of endosymbiotic bacteria and potentially pathogenic taxa.
View Article and Find Full Text PDFTrends Parasitol
January 2025
Department of Biology, Emory University, Atlanta, GA 30322, USA.
Hybridization and introgression between host species or between parasite species are emerging challenges for human, plant, and animal health, especially as global trends like climate change and urbanization increase overlap of species ranges. This creates opportunities for heterospecific crosses between diverged taxa that could generate novel host and parasite genotypes with unique traits (e.g.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA. Electronic address:
Ochrophyta is a vast and morphologically diverse group of algae with complex plastids, including familiar taxa with fundamental ecological importance (diatoms or kelp) and a wealth of lesser-known and obscure organisms. The sheer diversity of ochrophytes poses a challenge for reconstructing their phylogeny, with major gaps in sampling and an unsettled placement of particular taxa yet to be tackled. We sequenced transcriptomes from 25 strategically selected representatives and used these data to build the most taxonomically comprehensive ochrophyte-centered phylogenomic supermatrix to date.
View Article and Find Full Text PDFZookeys
December 2024
Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile Universidad de Concepción Concepción Chile.
a new species of deep-sea digenean, parasitizing the gallbladder of the "Bigeye grenadier" ( Günther, 1878) in the deep waters of the southeastern Pacific Ocean is described on the basis of morphological and molecular (28S rRNA) data. The new species is distinguishable from Yamaguti, 1940, the only other member of the genus, by its subterminal oral sucker, the position of the ovary and testes, the larger anterior seminal vesicle compared to the posterior one, and its larger eggs. In addition, the new species is a parasite of a deep-sea fish, whereas is a parasite of shallow-water fish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!