Background: Identification of the microflora of the sand fly gut and the environmental distribution of these bacteria are important components for paratransgenic control of Leishmania transmission by sand flies.
Methods: Biotic and abiotic bacterial communities of four compartments of a hyper-endemic focus of Zoonotic Cutaneous Leishmaniasis (ZCL) were investigated using 16S ribosomal DNA sequencing and phylogenetic tree construction. These compartments include Phlebotomus papatasi's gut, skin and intestinal tract of great gerbil Rhombomys opimus, the gerbil nest supplies, and plant food sources of the vectors and reservoirs.
Results: Sequence homology analysis using nine available 16S rDNA data bases revealed 40, 24, 15 and 14 aerobic bacterial species from the vector guts, the gerbil bodies, the gerbil nests, and the plants, respectively. The isolated bacteria belong to wide ranges including aerobic to facultative anaerobic, pathogen to commensals, sand fly oviposition inducers, land to air and ocean habitats, animal and human probiotics, and plant growth-promoting rhizobacteria. Matching data analysis suggested that the adult P. papatasi gut bacteria could be acquired from three routes, adult sugar feeding on the plant saps, adult blood feeding on the animal host, and larval feeding from nest supplies. However, our laboratory experiment showed that none of the bacteria of the reservoir skin was transmitted to female sand fly guts via blood feeding. The microflora of sand fly guts were associated with the sand fly environment in which the predominant bacteria were Microbacterium, Pseudomonas, and Staphylococcus in human dwellings, cattle farms, and rodent colonies, respectively. Staphylococcus aureus was the most common bacterium in sand fly guts. Presence of some sand fly ovipoisition inducers such Bacillus spp. and Staphylococcus saprophyticus support association between gut flora and oviposition induction.
Conclusions: Results of this study showed that Bacillus subtilis and Enterobacter cloacae particularly subsp. dissolvens are circulated among the sand fly guts, the plants, and the sand fly larval breeding places and hence are possible candidates for a paratransgenic approach to reduce Leishmania transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329651 | PMC |
http://dx.doi.org/10.1186/s13071-014-0517-3 | DOI Listing |
PLoS Negl Trop Dis
December 2024
Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement Travail), UMR S 1085, Rennes, France.
Background: Leishmaniasis, caused by Leishmania protozoan parasites transmitted by Phlebotomine sand flies, is a significant public health concern in the Mediterranean basin. Effective monitoring of Leishmania-infected sand flies requires standardized tools for comparing their distribution and infection prevalence. Consistent quantitative real-time PCR (qPCR) parameters and efficient DNA extraction protocols are crucial for reliable results over time and across regions.
View Article and Find Full Text PDFExp Parasitol
December 2024
Department of Botany, Aligarh Muslim University, Aligarh-202002, INDIA. Electronic address:
Effect of Meloidogyne incognita and Pseudomonas syringae pv. aptata (Psa) was observed singly, together and pre and post inoculations in 4 soil types on plant growth, parameters, chlorophyll, carotenoid and proline contents of beetroot (Beta vulgaris L). Plant growth, chlorophyll and carotenoid contents were greater in loam soil followed by 20% fly ash soil, 10% fly ash plus 10% sand amended soil and least in 20 % sand mix soil.
View Article and Find Full Text PDFParasit Vectors
December 2024
Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
Background: Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity.
View Article and Find Full Text PDFZookeys
December 2024
Department of Entomology, National Museum, Cirkusová 1740, CZ - 193 00, Praha 9 - Horní Počernice, Czech Republic National Museum Praha Czech Republic.
A fundamental prerequisite for understanding and protecting biodiversity is the construction of a high-quality faunal database. The primary objective of this study was to address knowledge gaps in the biodiversity of the family Psychodidae in Estonia. Faunistic data on 45 species of moth flies (Diptera: Psychodidae) from Estonia are presented, including 30 new country-records.
View Article and Find Full Text PDFParasit Vectors
December 2024
Center of Excellence in Vector Biology and Vector-Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Background: Leishmaniasis is an emerging vector-borne disease that occurs in Thailand. Although Leishmania (Mundinia) parasites, the causative agents of the disease have been identified, the vectors of the disease remain unidentified. In the present study, we collected sand flies from three caves located in endemic areas of leishmaniasis, including Lampang and Chiang Rai in northern Thailand, and Songkhla in southern Thailand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!