Luria-Bertani broth and acetone were usually used in naphthalene degradation experiments as nutrient and solvent. However, their effect on the degradation was seldom mentioned. In this work, we investigated the effect of LB, naphthalene concentration, and acetone on the degradation of naphthalene by Pseudomonas putida G7, which is useful for the degradation of naphthalene on future field remediation. By adding LB, the naphthalene degradation efficiencies and naphthalene dioxygenase were both decreased by 98%, while the catechol dioxygenase was decreased by 90%. Degradation of naphthalene was also inhibited when naphthalene concentration was 56 ppm and higher, which was accompanied with the accumulation of orange-colored metabolism products. However, acetone can stimulate the degradation of naphthalene, and the stimulation was more obvious when naphthalene concentration was lower than 2000 ppm. By assaying the enzyme activities of naphthalene dioxygenase and catechol dioxygenase, it was thought that the degradation efficiency was depending on the more sensitive enzymes on the complicated conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2175/106143014x14062131179078 | DOI Listing |
Molecules
December 2024
Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
Advanced oxidation processes (AOPs), including ionizing radiation treatment, are increasingly recognized as an effective method for the degradation of pharmaceutical pollutants, including non-steroidal anti-inflammatory drugs (NSAIDs). Nabumetone (NAB), a widely used NSAID prodrug, poses an environmental risk due to its persistence in aquatic ecosystems and its potential toxicity to non-target organisms. In this study, the radiolytic degradation of NAB was investigated under different experimental conditions (dose rate, radical scavenging, pH, matrix effect), and the toxicity of its degradation products was evaluated.
View Article and Find Full Text PDFMar Environ Res
December 2024
University of Manitoba, Winnipeg, MB, Canada.
Petroleum-derived contamination is a growing hazard for the Arctic Ocean and northern marine transportation corridors. In northern settings where the accessibility to oil spills can be limited, natural attenuation is the most promising remediation process. The goal of the presented research is to evaluate the impact of biodegradation on crude oil inside sea ice.
View Article and Find Full Text PDFMycopathologia
January 2025
Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
Trichophyton indotineae, first identified in India, has increasingly been reported in Asia, the Middle East, Europe, and recently in the USA. The global spread of terbinafine-resistant T. indotineae underscores the urgency of the issue.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Heverlee, Belgium. Electronic address:
Background: Antineoplastic agents are hazardous drugs used in cancer treatment and consequently can be present at the workplace (e.g. hospital), but also in a home-setting in case of treatment at home.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Civil and Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Water contamination by polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, is a serious environmental concern due to its persistence, bioaccumulation, and toxicity. This study explores the adsorption behavior of naphthalene using organobentonite (OBt), synthesized by intercalating cetyltrimethylammonium bromide (CTAB) into sodium bentonite (SBt) with varying cation exchange capacities (CECs). The effectiveness of OBt in naphthalene adsorption was evaluated by analyzing key parameters, including CEC, contaminant concentration, and contact time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!