The fully grown mammalian oocyte is transcriptionally quiescent and utilizes only transcripts synthesized and stored during early development. However, we find that an abundant RNA population is retained in the oocyte nucleus and contains specific mRNAs important for meiotic progression. Here we show that during the first meiotic division, shortly after nuclear envelope breakdown, translational hotspots develop in the chromosomal area and in a region that was previously surrounded the nucleus. These distinct translational hotspots are separated by endoplasmic reticulum and Lamin, and disappear following polar body extrusion. Chromosomal translational hotspots are controlled by the activity of the mTOR-eIF4F pathway. Here we reveal a mechanism that-following the resumption of meiosis-controls the temporal and spatial translation of a specific set of transcripts required for normal spindle assembly, chromosome alignment and segregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317492PMC
http://dx.doi.org/10.1038/ncomms7078DOI Listing

Publication Analysis

Top Keywords

translational hotspots
12
temporal spatial
8
mammalian oocyte
8
mtor-eif4f pathway
8
spatial regulation
4
regulation translation
4
translation mammalian
4
oocyte mtor-eif4f
4
pathway fully
4
fully grown
4

Similar Publications

ncRNA Editing: Functional Characterization and Computational Resources.

Methods Mol Biol

December 2024

Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.

Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.

View Article and Find Full Text PDF

The global distribution and diversity of wild-bird-associated pathogens: An integrated data analysis and modeling study.

Med

December 2024

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; School of Public Health, Anhui Medical University, Hefei 230022, P.R. China. Electronic address:

Background: Wild birds are significant vectors in global pathogen transmission, but the diversity and spatial distribution of the pathogens detected in them remain unclear. Understanding the transmission dynamics and hotspots of wild-bird-associated pathogens (WBAPs) is crucial for early disease prevention.

Methods: We compiled an up-to-date dataset encompassing all WBAPs by conducting an extensive search of publications from 1959 to 2022, mapped their diversity and global distribution, and utilized three machine learning algorithms to predict geospatial hotspots where zoonotic and emerging WBAPs were prevalent.

View Article and Find Full Text PDF

Over the last decade, the annual Immunorad Conference, held under the joint auspicies of Gustave Roussy (Villejuif, France) and the Weill Cornell Medical College (New-York, USA) has aimed at exploring the latest advancements in the fields of tumor immunology and radiotherapy-immunotherapy combinations for the treatment of cancer. Gathering medical oncologists, radiation oncologists, physicians and researchers with esteemed expertise in these fields, the Immunorad Conference bridges the gap between preclinical outcomes and clinical opportunities. Thus, it paves a promising way toward optimizing radiotherapy-immunotherapy combinations and, from a broader perspective, improving therapeutic strategies for patients with cancer.

View Article and Find Full Text PDF

The emerging field of cancer phenomics provides comprehensive insights into tumor heterogeneity, promoting advances in personalized oncology. This study explores current research hotspots and future development trends in cancer phenomics through a bibliometric analysis of research from 2000 to 2023. Using data from the Web of Science Core Collection, we analyzed 1260 publications to identify global contributions and collaborative networks.

View Article and Find Full Text PDF

Molecular epidemiology and antimicrobial resistance of Vibrio parahaemolyticus isolates from the Pearl River Delta region, China.

Int J Food Microbiol

December 2024

Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China. Electronic address:

The Pearl River Delta (PRD) region in southern China is a densely populated area and a hotspot for Vibrio parahaemolyticus infections. However, systematic research on this pathogen, particularly comparing clinical and environmental strains, remains limited. This study analyzed the molecular epidemiology and antimicrobial resistance of 200 V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!