There is a lack of validated tools for assessing Alzheimer's disease (AD) across Asia. This study evaluates the psychometric properties of the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), Disability Assessment for Dementia (DAD), and Neuropsychological Test Battery (NTB) in Asian participants. Participants with mild to moderate AD (n=251) and healthy controls (n=51) from Mainland China, Taiwan, Singapore, Hong Kong, and South Korea completed selected instruments at several time points. Test-retest reliability was better than 0.70 for all tests. AD participants performed significantly more poorly than controls on every score. Within the AD group, greater disease severity corresponded to significantly poorer performance. The AD group test performance worsened over time and there was a trend for worse performance in AD compared to healthy controls over time. The ADAS-Cog, DAD, and NTB are reliable, valid, and responsive measures in this population and could be used for clinical trials across Asian countries/regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299719PMC

Publication Analysis

Top Keywords

alzheimer's disease
16
disease assessment
8
asian participants
8
participants mild
8
mild moderate
8
healthy controls
8
disease
5
validation alzheimer's
4
assessment battery
4
battery asian
4

Similar Publications

Sound and Alzheimer's Disease-From Harmful Noise to Beneficial Soundscape Augmentation and Music Therapy.

Noise Health

January 2025

Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

Exposure to sound energy may be a risk factor or a therapeutic intervention for Alzheimer's disease (AD). On one hand, noise has a harmful effect on people with AD by contributing to hearing loss, sleep disturbance, oxidative stress, inflammation, and excitotoxicity. But on the other hand, clinical trials and nursing home interventions with soundscape augmentation involving natural sounds have shown promising results in alleviating psychophysiological symptoms in people with AD.

View Article and Find Full Text PDF

Background And Objectives: Cerebrovascular reactivity (CVR) represents the ability of cerebral blood vessels to regulate blood flow in response to vasoactive stimuli and is related to cognition in cerebrovascular and neurodegenerative conditions. However, few studies have examined CVR in the medial temporal lobe, known to be affected early in Alzheimer disease and to influence memory function. We aimed to examine whether medial temporal CVR is associated with memory function in older adults with and without mild cognitive impairment (MCI).

View Article and Find Full Text PDF

Introduction: The prevalence of neurodegenerative diseases has significantly increased, necessitating a deeper understanding of their symptoms, diagnostic processes, and prevention strategies. Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are two prominent neurodegenerative conditions that present diagnostic challenges due to overlapping symptoms. To address these challenges, experts utilize a range of imaging techniques, including magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT).

View Article and Find Full Text PDF

Case-only designs in longitudinal cohorts are a valuable resource for identifying disease-relevant genes, pathways, and novel targets influencing disease progression. This is particularly relevant in Alzheimer's disease (AD), where longitudinal cohorts measure disease "progression," defined by rate of cognitive decline. Few of the identified drug targets for AD have been clinically tractable, and phenotypic heterogeneity is an obstacle to both clinical research and basic science.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!