A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Palytoxin down-modulates the epidermal growth factor receptor through a sodium-dependent pathway. | LitMetric

Palytoxin, a non-12-O-tetradecanoylphorbol-13-acetate type tumor promoter, has been shown to inhibit epidermal growth factor (EGF) binding to both high and low affinity receptors through a protein kinase C-independent pathway. In the present paper, we have investigated the mechanism of palytoxin action in Swiss 3T3 cells. Two lines of evidence indicate that calcium is not required for palytoxin activity. First, palytoxin can induce the loss of EGF binding sites in the absence of external calcium. Second, studies with the photosensitive protein aequorin indicate that palytoxin does not cause the influx of external calcium or the release of calcium from internal stores under the conditions used in these studies. However, palytoxin action does appear to be dependent upon the presence of sodium. When extracellular sodium is replaced by either choline, Tris, or sucrose, palytoxin is unable to decrease EGF binding to either high or low affinity receptors. Studies of sodium influx indicate that palytoxin induces rapid sodium uptake and that the rate of sodium uptake is dose-dependent. Furthermore, there appears to be a direct correspondence between the extent of inhibition of EGF binding by palytoxin and the rate of sodium uptake. Finally, the palytoxin-induced inhibition of EGF binding can be mimicked by monensin, a sodium ionophore. The specificity of this sodium dependence was tested by substituting lithium, potassium, or cesium for sodium. Although lithium is an effective substitute for sodium, palytoxin can no longer inhibit EGF binding when sodium is replaced by either potassium or cesium. Marked inhibition of palytoxin action is also obtained when 5.4 mM potassium or 5.4 mM cesium are added to the sodium-containing medium. These studies suggest that palytoxin is able to down-modulate the EGF receptor through a novel mechanism involving the activation or formation of a sodium pump or channel.

Download full-text PDF

Source

Publication Analysis

Top Keywords

egf binding
24
palytoxin
13
palytoxin action
12
sodium
12
sodium uptake
12
potassium cesium
12
epidermal growth
8
growth factor
8
binding high
8
high low
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!