In vitro dissolution of uranium-contaminated soil in simulated lung fluid containing a pulmonary surfactant.

Health Phys

*University of Cincinnati, College of Engineering & Applied Science, Department of Mechanical and Materials Engineering, Nuclear & Radiological Engineering, 598 Rhodes Hall, Cincinnati, OH 45221-0072; †Cincinnati Children's Hospital Medical Center, University of Cincinnati Department of Pediatrics, 3333 Burnet Avenue, Cincinnati, OH 45229-3026; §University of Cincinnati, Department of Chemistry, 404 Crosley Tower, Cincinnati, OH 45521-0037.

Published: March 2015

During the latter part of the twentieth century, the United States developed a highly technical nuclear weapons complex that involved workers at many facilities performing complex missions at a number of different industrial sites across the country. Now, many of these sites are being remediated to remove legacy materials including chemical and radioactive wastes. Along with remediation comes the responsibility to adequately assess risk to cleanup workers who could be exposed to any hazardous materials, including resuspended uranium dust, encountered during environmental restoration. Inhalation of resuspended uranium represents one of the exposure hazards at an abandoned former metal rolling mill where approximately 11 thousand tons of uranium metal was rolled between 1947 and 1958. Residual uranium contamination in the dirt floor of this abandoned site has been exposed to rain, ice, snow, and other environmental factors for more than 50 y. This report describes the solubility of the uranium contamination in this dirt measured in vitro using a modified recipe for simulated lung fluid that contains a pulmonary surfactant. Small (0.1 g) aliquots of dirt collected at this site were sequentially dissolved in simulated lung fluid for increasing periods of time up to 30 d. Solubility was classified according to the ICRP categories as fast, medium, and slow. Results demonstrate that the solubility designation for the uranium contamination in the dirt is approximately 50% fast, 15% medium, and 35-40% slow. There was no observed difference in solubility when a pulmonary surfactant was added to the simulated lung fluid.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HP.0000000000000211DOI Listing

Publication Analysis

Top Keywords

simulated lung
16
lung fluid
16
pulmonary surfactant
12
uranium contamination
12
contamination dirt
12
fluid pulmonary
8
materials including
8
resuspended uranium
8
uranium
6
vitro dissolution
4

Similar Publications

Rapamycin, a macrocyclic antibiotic derived from the actinomycetes Streptomyces hygroscopicus, is a widely used immunosuppressant and anticancer drug. Even though rapamycin is regarded as a multipotent drug acting against a broad array of anomalies and diseases, the mechanism of action of rapamycin and associated pathways have not been studied and reported clearly. Also reports on the binding of rapamycin to cancer cell receptors are limited to the serine/threonine protein kinase mTORC1.

View Article and Find Full Text PDF

Human papillomavirus 16 and human papillomavirus 18 have been associated with different life-threatening cancers, including cervical, lung, penal, vulval, vaginal, anal, and oropharyngeal cancers, while cervical cancer is the most prominent one. Several research studies have suggested that the oncoproteins E6 and E7 are the leading cause of cancers associated with the human papillomavirus infection. Therefore, we developed two mRNA vaccines (V1 and V2) targeting these oncoproteins.

View Article and Find Full Text PDF

Background: Lazertinib demonstrates efficacy similar to that of osimertinib in the first-line treatment of epidermal growth factor receptor ()-mutated advanced lung cancer. However, its cost-effectiveness has not yet been evaluated.

Objective: To study the cost-effectiveness of lazertinib as a first-line treatment for patients with -mutated advanced lung cancer.

View Article and Find Full Text PDF

Enhancing bibliometric methods in simulation-based robotic surgery training.

J Robot Surg

January 2025

Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan Province, China.

View Article and Find Full Text PDF

New thiazole derivative as a potential anticancer and topoisomerase II inhibitor.

Sci Rep

January 2025

Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt.

To shed light on the significance of thiazole derivatives in the advancement of cancer medication and to contribute to therapeutic innovation, we have designed the synthesis and antiproliferative activity investigation of 5-(1,3-dioxoisoindolin-2-yl)-7-(4-nitrophenyl)-2-thioxo-3,7-dihydro-2H-pyrano[2,3-d] thiazole-6-carbonitrile, the structure of thiazole derivative was confirmed by spectroscopic techniques UV, IR and NMR. The cytotoxic activity (in vitro) of the new hybrid synthesized compound on five human cancer cell lines; human liver hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), breast adenocarcinoma (MCF-7), and epithelioid carcinoma (Hela), and a normal human lung fibroblast (WI-38) was studied using MTT assay. The compound exhibited a strong cytotoxicity effect against HepG-2 and MCF-7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!