Saturated fatty acid (SFA) high-fat diets (HFDs) enhance interleukin (IL)-1β-mediated adipose inflammation and insulin resistance. However, the mechanisms by which different fatty acids regulate IL-1β and the subsequent effects on adipose tissue biology and insulin sensitivity in vivo remain elusive. We hypothesized that the replacement of SFA for monounsaturated fatty acid (MUFA) in HFDs would reduce pro-IL-1β priming in adipose tissue and attenuate insulin resistance via MUFA-driven AMPK activation. MUFA-HFD-fed mice displayed improved insulin sensitivity coincident with reduced pro-IL-1β priming, attenuated adipose IL-1β secretion, and sustained adipose AMPK activation compared with SFA-HFD-fed mice. Furthermore, MUFA-HFD-fed mice displayed hyperplastic adipose tissue, with enhanced adipogenic potential of the stromal vascular fraction and improved insulin sensitivity. In vitro, we demonstrated that the MUFA oleic acid can impede ATP-induced IL-1β secretion from lipopolysaccharide- and SFA-primed cells in an AMPK-dependent manner. Conversely, in a regression study, switching from SFA- to MUFA-HFD failed to reverse insulin resistance but improved fasting plasma insulin levels. In humans, high-SFA consumers, but not high-MUFA consumers, displayed reduced insulin sensitivity with elevated pycard-1 and caspase-1 expression in adipose tissue. These novel findings suggest that dietary MUFA can attenuate IL-1β-mediated insulin resistance and adipose dysfunction despite obesity via the preservation of AMPK activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/db14-1098 | DOI Listing |
Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Loma Linda University Health, Loma Linda, CA, USA.
Background: Only about 50% of the variance in cognitive decline occurring during Alzheimer's pathogenesis is attributable to standard AD biomarkers (cerebrocortical Aβ, pathological tau, and atrophy) (Tosun et al., Alzheimer's Dement. 18: 1370, 2022).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Afe-Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
Background: Diabetic conditions are associated with alterations in brain functions like memory deficits through processes like synaptic dysfunction in the hippocampus. Administering a combination of silver nanonaringenin and vitamin E appears promising since they are known to prevent diabetes and memory deficits in previous studies, and nanoformulation of naringenin may be one way to improve delivery and bioavailability of naringenin in the brain. This study investigated the effects of co-administering silver nanonaringenin and vitamin E against memory deficits and synaptic dysfunction in the hippocampus of a mice model of high-fat diet and streptozotocin (HS).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia. Although AD is characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs), it's estimated that nearly half of AD cases might be attributed to modifiable risk factors and lifestyle-based interventions may offer promising preventative strategies to delay disease onset and progression. Polyphenolic derivatives easily found in foods like luteolin and curcumin have shown beneficial effects to counteract cognitive decline.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UIPS, CHANDIGARH, Punjab, India.
Background: Alzheimer's disease is a brain disorder that causes neurodegeneration and is linked with insulin resistance at molecular, clinical, and demographic levels. Defective insulin signaling promotes Aβ aggregation and accelerates Aβ formation in the brain leading to Type III diabetes.
Objective: The objective of this research project is to demonstrate a linkage if any between the risk of developing Alzheimer's disease and insulin resistance.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!