Smartphones and portable media devices are both equipped with sensor components, such as accelerometers. A software application enables these devices to function as a robust wireless accelerometer platform. The recorded accelerometer waveform can be transmitted wireless as an e-mail attachment through connectivity to the Internet. The implication of such devices as a wireless accelerometer platform is the experimental and post-processing locations can be placed anywhere in the world. Gait was quantified by mounting a smartphone or portable media device proximal to the lateral malleolus of the ankle joint. Attributes of the gait cycle were quantified with a considerable accuracy and reliability. The patellar tendon reflex response was quantified by using the device in tandem with a potential energy impact pendulum to evoke the patellar tendon reflex. The acceleration waveform maximum acceleration feature of the reflex response displayed considerable accuracy and reliability. By mounting the smartphone or portable media device to the dorsum of the hand through a glove, Parkinson's disease hand tremor was quantified and contrasted with significance to a non-Parkinson's disease steady hand control. With the methods advocated in this chapter, any aspect of human movement may be quantified through smartphones or portable media devices and post-processed anywhere in the world. These wearable devices are anticipated to substantially impact the biomedical and healthcare industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-2172-0_23 | DOI Listing |
Innovation (Camb)
January 2025
Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios.
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.
Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.
Antibiotics (Basel)
November 2024
Department of Infectious Diseases and Laboratory Medicine, Kanazawa University, Kanazawa 920-8641, Japan.
: In environments with high-frequency contact surfaces, drug-resistant bacteria, such as carbapenem-resistant and methicillin-resistant (MRSA), can survive for extended periods, contributing to healthcare-associated infections. Ultraviolet (UV)-C irradiation often fails to adequately disinfect shadowed areas, leading to a persistent contamination risk. We evaluated the effectiveness of using a UV-C containment unit (UVCCU) in conjunction with UV-C irradiation to improve the sterilization effects on both direct and indirect surfaces, including shadowed areas, and to assess the leakage of UV radiation to the surroundings.
View Article and Find Full Text PDFAnal Methods
January 2025
Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.
In this work, a hydrophilic Eu-based ratiometric fluorescent nanosensor (PAAC-Eu) was developed for Cu ion detection in aqueous solutions and imaging in living cells. The sensor was prepared a simple one-step reaction at room temperature, leveraging the synergistic coordination of commercially accessible polyacrylic acid (PAA) and coumarin-3-carboxylic acid (CCAH) with Eu ions. PAAC-Eu was easy to disperse in aqueous media and exhibited two characteristic emission bands at 406 nm and 618 nm, respectively, upon excitation at 350 nm.
View Article and Find Full Text PDFJ Electr Bioimpedance
January 2024
Agrotechlink, Joinville, Brazil.
The conductive polymeric electrodes using 3D printing are an innovative material development with the advantage of the flexibility of integrating isolated polymers with a higher electrical conductivity of carbon-based materials, generating new possibilities in environmental, healthcare, and food monitoring. Based on the morphology, geometric arrangement, and dielectric properties of the composites, the performance of the electrodes is improved. Structural designs are optimized to enhance functionalities such as adhesion, catalytic activity, and the reduction of interface energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!