A immunofluorescence microtip sensor was developed for specific detection of Mycobacterium cells in sputum samples by the combination of electric field, streaming flow, and immuno-affinity binding. The detection limit was 200 CFU/mL in human sputum, which was comparable to PCR but without requiring bacteriological culture, centrifugation, or nucleic acid amplification. In spite of the complex nature of physical, chemical, and biological mechanisms, the simple operation of "dipping and withdrawal" of tips will allow for screening by minimally trained personnel within 30 min. In addition, the minimal power requirement (5 W) combined with low assay cost is ideal for point-of-care (POC) screening in resource-limited settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-2172-0_4 | DOI Listing |
Methods Mol Biol
September 2015
Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
A immunofluorescence microtip sensor was developed for specific detection of Mycobacterium cells in sputum samples by the combination of electric field, streaming flow, and immuno-affinity binding. The detection limit was 200 CFU/mL in human sputum, which was comparable to PCR but without requiring bacteriological culture, centrifugation, or nucleic acid amplification. In spite of the complex nature of physical, chemical, and biological mechanisms, the simple operation of "dipping and withdrawal" of tips will allow for screening by minimally trained personnel within 30 min.
View Article and Find Full Text PDFPLoS One
December 2014
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America.
An occupationally safe (biosafe) sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min.
View Article and Find Full Text PDFLab Chip
April 2012
Department of Mechanical Engineering, University of Washington, Box 352600, Seattle, Washington 98195, USA.
A rapid, accurate tuberculosis diagnostic tool that is compatible with the needs of tuberculosis-endemic settings is a long-sought goal. An immunofluorescence microtip sensor is described that detects Mycobacterium tuberculosis complex cells in sputum in 25 minutes. Concentration mechanisms based on flow circulation and electric field are combined at different scales to concentrate target bacteria in 1 mL samples onto the surfaces of microscale tips.
View Article and Find Full Text PDFLab Chip
November 2010
Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.
Rapid, low cost screening of tuberculosis requires an effective enrichment method of Mycobacterium tuberculosis (MTB) cells. Currently, microfiltration and centrifugation steps are frequently used for sample preparation, which are cumbersome and time-consuming. In this study, the size-selective capturing mechanism of a microtip-sensor is presented to directly enrich MTB cells from a sample mixture.
View Article and Find Full Text PDFPLoS Pathog
May 2009
Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Cytomegalovirus (CMV) infection is a common infection in adults (seropositive 60-99% globally), and is associated with cardiovascular diseases, in line with risk factors such as hypertension and atherosclerosis. Several viral infections are linked to hypertension, including human herpes virus 8 (HHV-8) and HIV-1. The mechanisms of how viral infection contributes to hypertension or increased blood pressure are not defined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!