The mechanism by which psoralen is transported across the placenta was investigated in the BeWo human placental cell line derived from choriocarcinoma in a transwell assay system using liquid chromatography-mass spectrometry/mass spectrometry detection. Psoralen uptake by BeWo cells increased linearly over the concentration range of 0.01 µM to 100 µM (r (2) = 0.997) and was not saturable. Psoralen uptake by BeWo cells was not affected by temperature (4 °C, room temperature, and 37 °C; p > 0.05). Psoralen transport increased linearly over 180 min (r (2) = 0.988) with 3.08 ± 0.26 %, 5.47 ± 0.21 %, 7.54 ± 0.06 %, 9.40 ± 0.37 %, 11.49 ± 0.31 %, and 12.46 ± 0.61 % transferred from the apical chamber to the basolateral chamber in the transwell assays at 30, 60, 90, 120, 150, and 180 min, respectively. The rate of transport showed the same tendency, increasing linearly from 0.13 ± 0.01 pmol/s to 0.58 ± 0.03 pmol/s over the concentration range of 25 µM to 100 µM (r (2) = 0.989). The apparent permeability coefficient for psoralen (100 µM) was 5.62 ± 0.24 × 10(-6) cm/s and 5.53 ± 0.47 × 10(-6) cm/s before and after treatment with verapamil (100 µM), respectively (p > 0.05). The efflux value for psoralen was approximately 1. These data show that psoralen is well absorbed and crosses the placental barrier via passive diffusion in the BeWo cell line.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0034-1396147DOI Listing

Publication Analysis

Top Keywords

bewo cells
12
psoralen
8
mechanism psoralen
8
human placental
8
placental cell
8
psoralen uptake
8
uptake bewo
8
increased linearly
8
concentration range
8
bewo
5

Similar Publications

PLGA nanocarriers biomimetic of platelet membranes and their interactions with the placental barrier.

Int J Pharm

January 2025

The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China. Electronic address:

This study focuses on the preparation and characterization of platelet membrane biomimetic nanocarriers (P-PLGA NPs) and investigates their interactions with the transplacental barrier. Poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) were coated with platelet membrane (PLTM) to construct P-PLGA NPs. Additionally, fluorinated polyethylenimine (F-PEI) was grafted onto PLGA NPs to prepare F-PEI-PLGA NPs, which were compared with PLGA NPs.

View Article and Find Full Text PDF

Mechanisms controlling the process and patterning of blood vessel development in the placenta remain largely unknown. The close physical proximity of early blood vessels observed in the placenta and the cytotrophoblast, as well as the reported production of vasculogenic growth factors by the latter, suggests that signalling between these two niches may be important. Here, we have developed an in vitro model to address the hypothesis that the cytotrophoblast, by the secretion of soluble factors, drives differentiation of resident sub-trophoblastic mesenchymal stem cells (MSCs) along a vascular lineage, thereby establishing feto-placental circulation.

View Article and Find Full Text PDF

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a synthetic additive widely used in the rubber industry, and its oxidized product 6PPD-quinone (6PPDQ), have garnered widespread attention as an emerging hazardous chemicals owing to their potential detrimental effects on aquatic ecosystem and human health. The effects of 6PPD and 6PPDq on the female reproductive tract, especially embryo implantation, remain unknown and were investigated in this study. We used the spheroid attachment and outgrowth models of BeWo trophoblastic spheroids and Ishikawa cells as surrogates for the human blastocyst and endometrial epithelium, respectively.

View Article and Find Full Text PDF

Iron transfer across a functional syncytialized trophoblast monolayer.

Placenta

November 2024

Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland. Electronic address:

Studying iron transfer across trophoblast monolayers is crucial given the significance of iron in maintaining a healthy pregnancy and supporting fetal growth and development. To get insights into the complex mechanism of transplacental iron transfer, we developed a standardized Transwell®-based monolayer model using BeWo (clone b30) cells. Our proposed method is divided into two parts: 1.

View Article and Find Full Text PDF

The placenta plays a critical role in nutrient and oxygen exchange during pregnancy, yet the effects of medicinal drugs on this selective barrier remain poorly understood. To overcome this, this study presents a cost-effective bioimpedance spectroscopy (BIS) system to assess tight junction integrity and monolayer formation in BeWo b30 cells, a widely used model of the multinucleated maternal-fetal exchange surface of the placental barrier. Cells were cultured on collagen-coated porous membranes and treated with forskolin to induce controlled syncytialization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!