During 2014, henipavirus infection caused severe illness among humans and horses in southern Philippines; fatality rates among humans were high. Horse-to-human and human-to-human transmission occurred. The most likely source of horse infection was fruit bats. Ongoing surveillance is needed for rapid diagnosis, risk factor investigation, control measure implementation, and further virus characterization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313660PMC
http://dx.doi.org/10.3201/eid2102.141433DOI Listing

Publication Analysis

Top Keywords

henipavirus infection
8
outbreak henipavirus
4
infection philippines
4
philippines 2014
4
2014 2014
4
2014 henipavirus
4
infection caused
4
caused severe
4
severe illness
4
illness humans
4

Similar Publications

Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country.

View Article and Find Full Text PDF

Integrated computational biophysics approach for drug discovery against Nipah virus.

Biochem Biophys Res Commun

January 2025

Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil. Electronic address:

The Nipah virus (NiV) poses a pressing global threat to public health due to its high mortality rate, multiple modes of transmission, and lack of effective treatments. NiV glycoprotein G (NiV-G) emerges as a promising target for the discovery of NiV drugs because of its essential role in viral entry and membrane fusion. Therefore, in this study, we applied an integrated computational and biophysics approach to identify potential inhibitors of NiV-G within a curated dataset of Peruvian phytochemicals.

View Article and Find Full Text PDF

Inhibitors of dihydroorotate dehydrogenase synergize with the broad antiviral activity of 4'-fluorouridine.

Antiviral Res

January 2025

Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany. Electronic address:

Article Synopsis
  • - RNA viruses like influenza and coronaviruses pose significant health threats, often lacking effective vaccines or treatments, while others like filo- and henipaviruses have high mortality rates despite limited outbreaks.
  • - The antiviral drug 4'-Fluorouridine (4'-FlU) inhibits RNA virus replication by targeting the RNA-dependent RNA polymerase, but its effectiveness varies across different viruses, necessitating strategies to improve its potency.
  • - Researchers found that inhibiting dihydroorotate dehydrogenase (DHODH) enhances the antiviral effects of 4'-FlU against several RNA viruses, including in models of infection, potentially by depleting uridine, which boosts 4'-FlU's incorporation into viral
View Article and Find Full Text PDF

Background: The importance of studying Nipah virus (NiV) stems from its high fatality rates and potential for causing widespread outbreaks. Recent incidences in Southeast Asian countries highlight the urgent need for effective risk evaluation and mitigation strategies.

Justification: Studying NiV in Southeast Asia is crucial due to the geographic and epidemiological significance that makes this region predominantly susceptible to the virus.

View Article and Find Full Text PDF

Background And Aims: The World Health Organization (WHO) recognized the potential for a severe international epidemic and introduced the term "Disease X" to classify pathogens that not yet identified. The Nipah virus (NiV) is highly dangerous due to its zoonotic nature, high mortality rate, and ability to cause severe clinical symptoms in humans. In this review, we gather the latest information on the NiV and its potential to become a significant candidate for Disease X.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!