During 2014, henipavirus infection caused severe illness among humans and horses in southern Philippines; fatality rates among humans were high. Horse-to-human and human-to-human transmission occurred. The most likely source of horse infection was fruit bats. Ongoing surveillance is needed for rapid diagnosis, risk factor investigation, control measure implementation, and further virus characterization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313660 | PMC |
http://dx.doi.org/10.3201/eid2102.141433 | DOI Listing |
Pathology
December 2024
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil. Electronic address:
The Nipah virus (NiV) poses a pressing global threat to public health due to its high mortality rate, multiple modes of transmission, and lack of effective treatments. NiV glycoprotein G (NiV-G) emerges as a promising target for the discovery of NiV drugs because of its essential role in viral entry and membrane fusion. Therefore, in this study, we applied an integrated computational and biophysics approach to identify potential inhibitors of NiV-G within a curated dataset of Peruvian phytochemicals.
View Article and Find Full Text PDFAntiviral Res
January 2025
Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany. Electronic address:
Background: The importance of studying Nipah virus (NiV) stems from its high fatality rates and potential for causing widespread outbreaks. Recent incidences in Southeast Asian countries highlight the urgent need for effective risk evaluation and mitigation strategies.
Justification: Studying NiV in Southeast Asia is crucial due to the geographic and epidemiological significance that makes this region predominantly susceptible to the virus.
Background And Aims: The World Health Organization (WHO) recognized the potential for a severe international epidemic and introduced the term "Disease X" to classify pathogens that not yet identified. The Nipah virus (NiV) is highly dangerous due to its zoonotic nature, high mortality rate, and ability to cause severe clinical symptoms in humans. In this review, we gather the latest information on the NiV and its potential to become a significant candidate for Disease X.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!