Aurora kinase A (AURKA) regulates the cell cycle checkpoint and maintains genomic integrity. AURKA is overexpressed in various malignant tumors and its upregulation induces chromosomal instability, which leads to aneuploidy and cell transformation. To investigate the role of AURKA in endometrial cancer, we evaluated the association of immunohistochemical expression of AURKA with clinicopathological factors. Furthermore, we examined the effects of AURKA inhibition by transfected siRNA in HEC-1B cells on colony-forming ability, invasion and migration capacity, and chemosensitivity. Immunohistochemical staining showed that overexpression of AURKA was significantly associated with tumor grade (P<0.05) and poor histologic differentiation (P<0.05). The recurrence rate also tended to be high in cases with overexpression of AURKA (P<0.1) and these cases also had a tendency for shorter disease-free survival (DFS) (P<0.1). AURKA inhibition in endometrial cancer cell lines significantly decreased cell growth, invasion and migration (P<0.05), and increased chemosensitivity to paclitaxel. We also evaluated the efficacy of a combination of AURKA siRNA and paclitaxel against subcutaneous tumors formed in a nude mouse. After treatment, the tumor volume shrank significantly compared to treatment with paclitaxel only (P<0.05). To our knowledge, this is the first study in endometrial carcinoma to show a correlation between overexpression of AURKA and tumor grade, histological type and sensitivity to paclitaxel. AURKA is a promising therapeutic target in endometrial cancer and the combination therapy with AURKA inhibitors and paclitaxel could be effective for endometrial cancer that is resistant to conventional treatment and has a poor prognosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356503PMC
http://dx.doi.org/10.3892/ijo.2015.2842DOI Listing

Publication Analysis

Top Keywords

aurora kinase
8
endometrial cancer
8
aurka
6
kinase role
4
role therapeutic
4
therapeutic target
4
target clinical
4
clinical biomarker
4
biomarker endometrial
4
cancer aurora
4

Similar Publications

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer with a high metastatic rate and high mortality rate. The molecular mechanism of ccRCC development, however, needs further study. Aurora kinase B (AURKB) functions as an important oncogene in various tumors; therefore, in the present study, we aimed to explore the mechanism by which AURKB affects ccRCC development.

View Article and Find Full Text PDF

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.

Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).

View Article and Find Full Text PDF

Aurora kinase B (AurB) is a pivotal regulator of mitosis, making it a compelling target for cancer therapy. Despite significant advances in protein kinase inhibitor development, there are currently no AurB inhibitors readily available for therapeutic use. This study introduces a machine learning-assisted drug repurposing framework integrating quantitative structure-activity relationship (QSAR) modeling, molecular fingerprints-based classification, molecular docking, and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Background/objectives: Breast cancer (BC) remains one of the most prevalent and deadly cancers worldwide, with limited access to advanced treatments in developing regions. There is a critical need for novel therapies with unique mechanisms of action, especially to overcome resistance to conventional platinum-based drugs. This study investigates the anticancer potential of the ruthenium complex Bis(quinolin-8-olato)bis(triphenylphosphine)ruthenium(II) (Ru(quin)) in ER-positive (T47D) and triple-negative (MDA-MB-231) BC cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!