Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

Nano Lett

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States.

Published: February 2015

Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666516PMC
http://dx.doi.org/10.1021/nl504840bDOI Listing

Publication Analysis

Top Keywords

nanophotonic force
8
force microscopy
8
particle-surface interactions
8
interaction forces
8
thermal noise
8
microscopy characterizing
4
characterizing particle-surface
4
interactions near-field
4
near-field photonics
4
photonics direct
4

Similar Publications

Ferroelectric and Optoelectronic Coupling Effects in Layered Ferroelectric Semiconductor-Based FETs for Visual Simulation.

Adv Sci (Weinh)

January 2025

Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.

Controlling polarization states of ferroelectrics can enrich optoelectronic properties and functions, offering a new avenue for designing advanced electronic and optoelectronic devices. Here, ferroelectric semiconductor-based field-effect transistors (FeSFETs) are fabricated, where the channel is a ferroelectric semiconductor (e.g.

View Article and Find Full Text PDF

Construction of Chirality-Sorting Optical Force Pairs.

Phys Rev Lett

December 2024

Optics Research Group, Delft University of Technology, Department of Imaging Physics, Lorentzweg 1, 2628CJ Delft, The Netherlands.

Chiral objects are abundant in nature, and although the enantiomers have almost identical physical properties apart from their handedness, they can exhibit significantly different chemical properties and biological functions. This underscores the importance of sorting chiral substances. In this Letter, we demonstrate that chirality-sorting optical force pairs can be inversely generated in a tightly focused Gaussian beam by tailoring the input polarization state.

View Article and Find Full Text PDF

Nearfield observation of spin-orbit interactions at nanoscale using photoinduced force microscopy.

Sci Adv

December 2024

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.

Optical spin and orbital angular momenta are intrinsic characteristics of light determined by its polarization and spatial degrees of freedom, respectively. At the nanoscale, sharply focused structured light carries coupled spin-orbital angular momenta with complex 3D nearfield structures, crucial for manipulating multidimensional information of light in nanophotonics. However, characterizing these interactions faces challenges with conventional farfield-based methods, which typically lack the essential accuracy and resolution to interrogate the structured nearfield with high fidelity.

View Article and Find Full Text PDF

With rapid development of holography, metasurface-based holographic communication scheme shows great potential in development of adaptive electromagnetic function. However, conventional passive metasurfaces are severely limited by poor reconfigurability, which makes it difficult to achieve wavefront manipulations in real time. Here, we propose a holographic communication strategy that on-demand target information is firstly acquired and encoded via a depth camera integrated with modified YOLOv5s target detection algorithm, then transmitted by software defined radio modules with long term evolution at 5 GHz, and finally reproduced in the form of holographic images by spin-decoupled programmable coding metasurfaces at 12 GHz after decoding through modified Gerchberg-Saxton algorithm.

View Article and Find Full Text PDF

Chiral optical forces exhibit opposite signs for the two enantiomeric versions of a chiral molecule or particle. If large enough, these forces might be able to separate enantiomers all optically, which would find numerous applications in different fields, from pharmacology to chemistry. Longitudinal chiral forces are especially promising for tackling the challenging scenario of separating particles of realistically small chiralities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!