Background And Purpose: NaV 1.8 ion channels have been highlighted as important molecular targets for the design of low MW blockers for the treatment of chronic pain. Here, we describe the effects of PF-01247324, a new generation, selective, orally bioavailable Nav 1.8 channel blocker of novel chemotype.

Experimental Approach: The inhibition of Nav 1.8 channels by PF-01247324 was studied using in vitro patch-clamp electrophysiology and the oral bioavailability and antinociceptive effects demonstrated using in vivo rodent models of inflammatory and neuropathic pain.

Key Results: PF-01247324 inhibited native tetrodotoxin-resistant (TTX-R) currents in human dorsal root ganglion (DRG) neurons (IC50 : 331 nM) and in recombinantly expressed h Nav 1.8 channels (IC50 : 196 nM), with 50-fold selectivity over recombinantly expressed TTX-R hNav 1.5 channels (IC50 : ∼10 μM) and 65-100-fold selectivity over TTX-sensitive (TTX-S) channels (IC50 : ∼10-18 μM). Native TTX-R currents in small-diameter rodent DRG neurons were inhibited with an IC50 448 nM, and the block of both human recombinant Nav 1.8 channels and TTX-R from rat DRG neurons was both frequency and state dependent. In vitro current clamp showed that PF-01247324 reduced excitability in both rat and human DRG neurons and also altered the waveform of the action potential. In vivo experiments n rodents demonstrated efficacy in both inflammatory and neuropathic pain models.

Conclusions And Implications: Using PF-01247324, we have confirmed a role for Nav 1.8 channels in both inflammatory and neuropathic pain. We have also demonstrated a key role for Nav 1.8 channels in action potential upstroke and repetitive firing of rat and human DRG neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409913PMC
http://dx.doi.org/10.1111/bph.13092DOI Listing

Publication Analysis

Top Keywords

nav channels
20
drg neurons
20
inflammatory neuropathic
12
channels ic50
12
selective orally
8
orally bioavailable
8
nav
8
bioavailable nav
8
nav channel
8
channel blocker
8

Similar Publications

Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries.

Toxins (Basel)

December 2024

Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.

The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.

View Article and Find Full Text PDF

Role of Hydration and Amino Acid Interactions on the Ion Permeation Mechanism in the hNa1.5 Channel.

Biochemistry

December 2024

Department of Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain.

This study explores the ion selectivity and conduction mechanisms of the hNa1.5 sodium channel using classical molecular dynamics simulations under an externally applied electric field. Our findings reveal distinct conduction mechanisms for Na and K, primarily driven by differences in their hydration states when they diffuse close to the channel's selective filter (DEKA) and extracellular ring (EEDD).

View Article and Find Full Text PDF

Voltage-gated sodium channel α-subunits (NaV1.1-1.9) initiate and propagate action potentials in neurons and myocytes.

View Article and Find Full Text PDF

Multiple gating processes associated with the distal end of the S6 segment of domain II in the Nav channels.

J Biol Chem

December 2024

The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China. Electronic address:

Voltage-gated sodium (Nav) channels are transmembrane proteins that play crucial roles in the initiation and propagation of action potentials (APs) in excitable tissues such as the heart, muscles, and nerves. The distal ends of the four domain S6 segments of Nav channels contain hydrophobic residues, which form an intracellular gate. This gate allows Nav channels to control ion flux in excitable cells by opening and closing.

View Article and Find Full Text PDF
Article Synopsis
  • Vestibular afferent neurons are classified into two types based on their spike timing regularity—regular (more excitable with lower thresholds) and irregular (less excitable with higher thresholds)—with distinct expressions of potassium (K) channels influencing these traits.
  • Researchers conducted experiments on mouse vestibular ganglion neurons to explore the effects of various sodium (Na) current types (transient, persistent, and resurgent) on spiking behavior, finding that different Na currents affect spike rates and patterns in both regular and irregular neurons.
  • Modeling suggested that while increasing transient Na current raises spike rates universally, persistent Na current enhances regularity and rate in sustained neurons but has a minimal effect in transient neurons.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!