Lithium-O2 (Li-O2) batteries are currently limited by a large charge overpotential at practically relevant current densities, and the origin of this overpotential has been heavily debated in the literature. This paper presents a series of electrochemical impedance measurements suggesting that the increase in charge potential is not caused by an increase in the internal resistance. It is proposed that the potential shift is instead dictated by a mixed potential of parasitic reactions and Li2O2 oxidation. The measurements also confirm that the rapid potential loss near the end of discharge ("sudden death") is explained by an increase in the charge transport resistance. The findings confirm that our theory and conclusions in ref 1, based on experiments on smooth small-area glassy carbon cathodes, are equally valid in real Li-O2 batteries with porous cathodes. The parameter variations performed in this paper are used to develop the understanding of the electrochemical impedance, which will be important for further improvement of the Li-air battery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am5083254DOI Listing

Publication Analysis

Top Keywords

electrochemical impedance
12
li-o2 batteries
12
increase charge
8
impedance spectroscopy
4
spectroscopy investigation
4
investigation overpotentials
4
overpotentials li-o2
4
batteries lithium-o2
4
lithium-o2 li-o2
4
batteries currently
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!