Magnetic nanoparticles (MNPs) conjugated with aptamer was developed for the selective extraction of adenosine in urine samples followed by electrospray ionization-ion mobility spectrometry (ESI-IMS). The ion mobility spectrum of adenosine showed two peaks at low concentrations and two more peaks related to dimer of adenosine at high concentrations. However, the ion mobility spectrum of eluent at low concentration showed only the peaks related to dimer of adenosine. In other words, aptamer captured two adenosine molecules between the top G-quartet and the two short stems, where they bonded to each other. The mass spectrum of the eluent also validated the presence of dimer (m/z 535.95). The effect of extraction parameters on extraction efficiency including sorbent amount, elution conditions (solvent type and volume) and adsorption conditions were investigated. Under the optimized conditions, the linear dynamic range was found to be 0.05-5.00 μg mL(-1) with detection limit of 0.02 μg mL(-1). The extraction efficiency was 94% and the relative standard deviation was 4% for three replicate measurements of adenosine at 0.25 μg mL(-1) in urine samples. As a practical application, the method was applied for the determination of adenosine in urine samples of patients with lung cancer, and the obtained results were in good agreement with those obtained by HPLC-UV method. Therefore, the proposed method is an alternative clinical analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2015.01.021DOI Listing

Publication Analysis

Top Keywords

adenosine urine
12
ion mobility
12
urine samples
12
μg ml-1
12
magnetic nanoparticles
8
adenosine
8
extraction adenosine
8
mobility spectrometry
8
mobility spectrum
8
peaks dimer
8

Similar Publications

Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways.

Int J Mol Sci

January 2025

Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.

Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.

View Article and Find Full Text PDF

Discovery of cyanidin-3-O-galactoside as a novel CNT2 inhibitor for the treatment of hyperuricemia.

Bioorg Chem

January 2025

Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. Electronic address:

Inhibition of human concentrative nucleoside transporter 2 (CNT2) could suppress increases in serum urate levels derived from dietary purines. However, the structural basis for substrate recognition of CNT2 is still unknown and only a few inhibitors have been reported. In this study, a homology model of CNT2 was constructed and residues T315, E316, N426, N491, E492, F536 and N538 were identified as binding sites for adenosine through site-directed mutagenesis and a H-adenosine uptake assay.

View Article and Find Full Text PDF

Introduction: This study aimed to evaluate the metabolomic profiles of urine samples obtained from smokers who smoked cigarettes with low and high nicotine content.

Methods: Three smokers participated in this study. They were given low-nicotine (LN) cigarettes, and urine was collected at the end of the third day for the LN group.

View Article and Find Full Text PDF

Unlabelled: Over 170 types of chemical modifications have been identified in cellular RNAs across the three domains of life. Modified RNA is eventually degraded to constituent nucleosides, and in mammals, modified nucleosides are released into the extracellular space. By contrast, the fate of modified nucleosides in bacteria remains unknown.

View Article and Find Full Text PDF

Background: Podocytes have limited proliferative capacity, which leads to irreversible glomerular injury in diverse kidney diseases. Magnesium isoglycyrrhizinate (MgIG), a hepatoprotective agent in clinic, has been reported to improve glomerular podocyte injury. However, the underlying mechanism of MgIG in ameliorating podocyte injury remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!