Heterogeneity in dopant concentration has long been important to the electronic properties in chemically doped materials. In this work, we experimentally demonstrate that during the chemical vapor deposition process, in contrast to three-dimensional polycrystals, the substitutional nitrogen atoms avoid crystal grain boundaries and edges over micron length scales while distributing uniformly in the interior of each grain. This phenomenon is universally observed independent of the details of the growth procedure such as temperature, pressure, substrate, and growth precursor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl504875xDOI Listing

Publication Analysis

Top Keywords

dopant segregation
4
segregation polycrystalline
4
polycrystalline monolayer
4
monolayer graphene
4
graphene heterogeneity
4
heterogeneity dopant
4
dopant concentration
4
concentration long
4
long electronic
4
electronic properties
4

Similar Publications

Surface Reconstructed NiPt/Si Photoelectrodes for Bias-free Hydrogen Evolution Coupled with 5-hydroxymethylfurfural Oxidation.

Chem Asian J

November 2024

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Coupling hydrogen evolution reaction (HER) with biomass valorization using a photoelectrochemical (PEC) system presents a promising approach for effectively converting solar energy to chemical energy. A crucial biomass valorization reaction is the production of value-added 2,5-furandicarboxylic acid (FDCA) via 5-Hydroxymethylfurfural (HMF) oxidation reaction (HMFOR). To achieve efficient FDCA production, we demonstrate an effective photoanode strategy that combines metal silicidation, dopant segregation, and surface reconstruction to create a bimetallic silicide NiPtSi/n-Si photoanode.

View Article and Find Full Text PDF

Ion migration in semiconductor devices is facilitated by the presence of point defects and has a major influence on electronic and optical properties. It is important to understand and identify ways to mitigate photoinduced and electrically induced defect-mediated ion migration in semiconductors. In this Perspective, we discuss the fundamental mechanisms of defect-mediated ion migration and diffusion as understood through atomistic simulations.

View Article and Find Full Text PDF

Double perovskite CsAgBiBr is a promising alternative to lead-based perovskites with excellent stability and attractive optoelectronic properties. However, a relatively large bandgap severely limits its performance in many applications such as solar cells and photodetectors. It has been reported that a random distribution of Ag and Bi atoms in CsAgBiBr effectively reduces its bandgap without introducing dopants or impurities, while the mechanism remains unclear.

View Article and Find Full Text PDF

Electrolyzers operate over a range of temperatures; hence, it is crucial to design electrocatalysts that do not compromise the product distribution unless temperature can promote selectivity. This work reports a synthetic approach based on electrospinning to produce NiO:SnO nanofibers (NFs) for selectively reducing CO to formate above room temperature. The NFs comprise compact but disjoined NiO and SnO nanocrystals identified with STEM.

View Article and Find Full Text PDF

Enhanced humidity sensing properties of TaO and ITO doped rutile-TiO porous ceramics.

Sci Rep

August 2024

Giant Dielectric and Computational Design Research Group (GD-CDR), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.

In this study, we investigated the humidity sensing properties of TiO-based ceramics doped with tantalum pentoxide (TaO) and indium tin oxide (ITO). Pure TiO, 1%Ta-doped TiO (1%TTO), 1%ITO-doped TiO (1%ISTO), and 1%(TaO + ITO) co-doped TiO (1%ISTTO) ceramic samples were obtained by sintering at 1200 °C for 3 h. The rutile phase was observed in all samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!