Deregulated activation of oncogenic transcription factors such as signal transducer and activator of transcription 3 (STAT3) plays a pivotal role in proliferation and survival of hepatocellular carcinoma (HCC). Thus, agents which can inhibit STAT3 activation may have an enormous potential for treatment of HCC patients. Hence, in the present report, we investigated the effect of ascochlorin (ASC), an isoprenoid antibiotic on STAT3 activation cascade in various HCC cell lines and orthotopic mouse model. We observed that ASC could substantially inhibit both constitutive and IL-6/EGF inducible STAT3 activation as well as reduce its DNA binding ability. ASC increased the expression of protein inhibitor of activated STAT3 (PIAS3) which could bind to STAT3 DNA binding domain and thereby down-regulate STAT3 activation. Deletion of PIAS3 gene by siRNA abolished the ability of ASC to inhibit STAT3 activation and induce apoptosis in HCC cells. ASC also modulated the expression of diverse STAT3-regulated oncogenic gene products. Finally, when administered intraperitoneally, ASC also inhibited tumor growth in an orthotopic HCC mouse model and reduced STAT3 activation in tumor tissues. Overall our results indicate that ASC mediates its anti-tumor effects predominantly through the suppression of STAT3 signaling cascade, and can form the basis of novel therapy for HCC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528777 | PMC |
http://dx.doi.org/10.1016/j.molonc.2014.12.008 | DOI Listing |
Br J Dermatol
January 2025
Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory (GC26), Maimonides Biomedical Research Institute of Cordoba (IMIBIC)/University of Cordoba/Reina Sofia University Hospital, Menendez Pidal Ave, 14004, Córdoba, Spain.
Introduction: Non-segmental vitiligo (NSV) is an autoimmune condition characterized by melanocyte loss. While skin-specific mechanisms are well-studied, systemic immune dysregulation contributing to NSV pathogenesis remains unclear.
Objective: This study employs a multi-omic single-cell approach to investigate circulating immune cells in NSV, integrating transcriptional and chromatin accessibility data.
Mol Med Rep
April 2025
Emergency Medicine Department, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China.
Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the immunohistochemical data shown in Fig. 1C on p. 5 were strikingly similar to data appearing in different form in another article written by different authors at different research institutes that had already been published in the journal Archives of Biochemistry and Biophysics prior to the submission of this paper to .
View Article and Find Full Text PDFInt J Mol Med
April 2025
Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C.
Lung adenocarcinoma (LUAD) is a typical inflammation‑associated cancer, and anti‑inflammatory medications can be valuable in cancer therapy. Loratadine, a histamine receptor H1 (HRH1) antagonist, shows both anti‑inflammatory and anticancer properties. The present study aimed to evaluate impacts of loratadine on LUAD cells as well as in a LUAD xenograft mouse model, and explore underlying mechanisms.
View Article and Find Full Text PDFBMJ Oncol
July 2024
Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Objective: To evaluate signal transducer and activator of transcription 3 (STAT3) inhibition we conducted a co-clinical trial testing danvatirsen, a STAT3 antisense oligonucleotide (ASO) and checkpoint inhibition in conjunction with preclinical experiments.
Methods And Analysis: Orthotopically implanted pancreatic cancer (pancreatic adenocarcinoma (PDAC)) was treated with STAT3 ASO with immune checkpoint inhibition. Tumour infiltrating immune cell populations were characterised via flow cytometry.
Pharmacol Res
January 2025
Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China. Electronic address:
Gastric cancer remains a significant global health burden, characterized by regional variations in incidence and poor survival prospects in advanced stages. Natural killer (NK) cells play a crucial role in the body's anti-cancer defense, and chimeric antigen receptor (CAR)-NK cell therapy is gaining attention as a cutting-edge and promising treatment method. This study aims to tackle the challenge of TGF-β-mediated tumor immune evasion within the immunosuppressive tumor microenvironment by designing a novel chimeric cytokine receptor TRII/21R, which consists of extracellular domains of TGF-β receptor II (TRII) and transmembrane and intracellular domains of IL-21 receptor (21R) and can convert the immunosuppressive signal from TGF-β in the tumor microenvironment (TME) into an NK cell activation signal through the IL-21R-STAT3 pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!