Background: The complex interactions between CO2 increase and salinity were investigated in relation to decreased N supply, in order to determine the nutritional quality of broccoli (Brassica oleracea L. var. italica) plants under these conditions. Three different decreased N fertilisation regimes (NO3(-)/NH4(+) ratios of 100:0, 50:50 and 0:100 respectively) were combined with ambient (380 ppm) and elevated (800 ppm) [CO2 ] under non-saline (0 mmol L(-1) NaCl) and saline (80 mmol L(-1) NaCl) conditions. Nutrients (minerals, soluble protein and total amino acids) and natural antioxidants (glucosinolates, phenolic acids, flavonoids and vitamin C) were determined.

Results: In NH4(+) -fed broccoli plants, a marked growth reduction was shown and a redistribution of amino acids to cope with NH4(+) toxicity resulted in higher levels of indolic glucosinolate and total phenolic compounds. However, the positive effect of the higher [CO2] - ameliorating adverse effects of salinity--was only observed when N was supplied as NO3(-). Under reduced N fertilisation, the total glucosinolates were increased by a decreased NO3(-)/NH4 (+) ratio and elevated [CO2] but were unaffected by salinity.

Conclusion: Under future climatic challenges, such as increased salinity and elevated [CO2], a clear genotypic dependence of S metabolism was observed in broccoli plants. In addition, an influence of the form in which N was supplied on plant nutritional quality was observed; a combined NO3(-)/NH4(+) (50:50) supply allowed broccoli plants not only to deal with NH4(+) toxicity but also to modify their glucosinolate content and profile. Thus, for different modes of N fertilisation, the interaction with climatic factors must be considered in the search for an optimal balance between yield and nutritional quality.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.7102DOI Listing

Publication Analysis

Top Keywords

nutritional quality
12
broccoli plants
12
broccoli brassica
8
brassica oleracea
8
oleracea var
8
var italica
8
italica plants
8
future climatic
8
mmol l-1
8
l-1 nacl
8

Similar Publications

Background: This study was conducted to identify the impacts of the healthy plate model workshop on 4th-graders nutrition knowledge, behaviors, and habits.

Methods: The study was conducted from March to June 2023 in the Uskudar district of Istanbul, involving 102 children (50% girls) with a mean age of 10.2 ± 0.

View Article and Find Full Text PDF

Objective: Accumulation of hydrophobic bile acids is linked with cancer development. However, derivatives of deoxycholic acid (DCA) and lithocholic acid (LCA) produced via bacterial metabolism may mitigate the proinflammatory and cytotoxic effects of hydrophobic bile acids. The impact of diet on secondary bile acid (BA) derivative production has not been determined.

View Article and Find Full Text PDF

Good fat vs bad fat in Milk: A molecular level Understanding of Indian cow milk using confocal Raman microscopy.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:

Milk, a complex fluid renowned for abundance of vitamins and immune-boosting antibodies, holds a pivotal position in human nutrition. The research delves into the fundamental constituents of milk, focusing on cis-fatty acids (cis-FA), trans-fatty acids (trans-FA), and theα-helixstructure found in proteins. These constituents are instrumental in the determination of milk quality and its nutritional value.

View Article and Find Full Text PDF

Human exposure to mycotoxins is common and often severe in underregulated maize-based food systems. This study explored how monitoring of these systems could help to identify when and where outbreaks occur and inform potential mitigation efforts. Within a maize smallholder system in Kongwa District, Tanzania, we performed two food surveys of mycotoxin contamination at local grain mills, documenting high levels of aflatoxins and fumonisins in maize destined for human consumption.

View Article and Find Full Text PDF

Genome-Wide Association Study and Genomic Predictions for Hydroxycinnamate Concentrations in Maize Stover.

J Agric Food Chem

January 2025

UA MBG-UVIGO, Misión Biológica de Galicia (CSIC), Pazo de Salcedo, Pontevedra 36143, España.

Hydroxycinnamates, like ferulate (FA) and -coumarate (CA), are important components of maize cell walls, which influence pest resistance, ruminal digestibility, and biofuel production. Increasing their concentration has been linked to increased pest resistance, but also may lead to a decrease in nutritional value or bioethanol production efficiency. Therefore, improving forage quality or biofuel production without compromising plant resistance and a thorough understanding of the biosynthesis and deposition of these compounds is necessary, especially in stover, which is the feedstock for second-generation biofuel production and determines animal forage quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!