Background: Heat illness is a debilitating and potentially life-threatening condition. Limited data are available to identify individuals with heat illness at greatest risk for organ damage. We recently described the transcriptomic and proteomic responses to heat injury and recovery in multiple organs in an in vivo model of conscious rats heated to a maximum core temperature of 41.8°C (Tc,Max). In this study, we examined changes in plasma metabolic networks at Tc,Max, 24, or 48 hours after the heat stress stimulus.
Results: Circulating metabolites were identified by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Bioinformatics analysis of the metabolomic data corroborated proteomics and transcriptomics data in the tissue at the pathway level, supporting modulations in metabolic networks including cell death or catabolism (pyrimidine and purine degradation, acetylation, sulfation, redox alterations and glutathione metabolism, and the urea cycle/creatinine metabolism), energetics (stasis in glycolysis and tricarboxylic acid cycle, β-oxidation), cholesterol and nitric oxide metabolism, and bile acids. Hierarchical clustering identified 15 biochemicals that differentiated animals with histopathological evidence of cardiac injury at 48 hours from uninjured animals. The metabolic networks perturbed in the plasma corroborated the tissue proteomics and transcriptomics pathway data, supporting a model of irreversible cell death and decrements in energetics as key indicators of cardiac damage in response to heat stress.
Conclusions: Integrating plasma metabolomics with tissue proteomics and transcriptomics supports a diagnostic approach to assessing individual susceptibility to organ injury and predicting recovery after heat stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306243 | PMC |
http://dx.doi.org/10.1186/s12899-014-0014-0 | DOI Listing |
Inflammation
December 2024
Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
Endoplasmic reticulum stress (ERs) is implicated in antitumor immunity. However, the exact role of ERs in mediating the effects of dendritic cells (DCs) is not unclear. In this study, we explored the role of exosomes derived from ER-stressed hepatocellular carcinoma (HCC) cells in the antitumor effects of DCs and the precise underlying mechanism.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
Heat stress negatively affects dairy cow production, and health, leading to significant losses. Identifying mechanisms associated with heat tolerance is crucial for developing breeding strategies. Circular RNAs (circRNAs), a type of noncoding RNA, regulate cell functions like autophagy, apoptosis and proliferation.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain.
During the establishment of the symbiosis with legume plants, rhizobia are exposed to hostile physical and chemical microenvironments to which adaptations are required. Stress response proteins including small heat shock proteins (sHSPs) were previously shown to be differentially regulated in bacteroids induced by bv. viciae UPM791 in different hosts.
View Article and Find Full Text PDFACS Omega
December 2024
State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Hot dry rock (HDR) geothermal is a sustainable and clean energy source. However, its development progress is hindered by creating seepage channels in deep reservoirs with low porosity and permeability. Traditional hydraulic fracturing techniques are ineffective for enhancing the permeability of these high-strength reservoirs.
View Article and Find Full Text PDFHeat shock protein A1A (HSPA1A) is a molecular chaperone crucial in cell survival. In addition to its cytosolic functions, HSPA1A translocates to heat-shocked and cancer cells' plasma membrane (PM). In cancer, PM-localized HSPA1A (mHSPA1A) is associated with increased tumor aggressiveness and therapeutic resistance, suggesting that preventing its membrane localization could have therapeutic value.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!