A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis of alloy AuCu nanoparticles with the L1₀ structure in an ionic liquid using sputter deposition. | LitMetric

Sputter deposition onto ionic liquids (ILs) was applied to synthesize AuCu bimetallic alloy nanoparticles (NPs) dispersed in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4). A mixed target of Au and Cu materials was used for simultaneous sputter deposition onto the IL under an Ar pressure of 10 Pa. Two types of heating procedures within the range of 323-573 K were examined for control of the structures of NPs, particularly addressing the phase transition of the alloy NPs from the face centered cubic (fcc) structure to the L1₀ structure. One was heating after the sputter deposition in N2 at atmospheric pressure for 1 h. Another was a combination of heating during the sputter deposition and subsequent heating under an Ar pressure from 0.5 to 0.8 Pa for 1 h. Although both cases exhibited lowering of the phase transition temperatures compared with the temperature for the bulk, the latter procedure at 423 K only provided the NPs (approx. 5 nm) consisting of the L1₀ structure in the dispersed manner. A mechanism for forming the L1₀ structure was proposed for explaining the difference between results obtained using the two procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4dt03557gDOI Listing

Publication Analysis

Top Keywords

sputter deposition
20
l1₀ structure
16
phase transition
8
heating sputter
8
structure
5
sputter
5
deposition
5
synthesis alloy
4
alloy aucu
4
aucu nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!