Sputter deposition onto ionic liquids (ILs) was applied to synthesize AuCu bimetallic alloy nanoparticles (NPs) dispersed in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4). A mixed target of Au and Cu materials was used for simultaneous sputter deposition onto the IL under an Ar pressure of 10 Pa. Two types of heating procedures within the range of 323-573 K were examined for control of the structures of NPs, particularly addressing the phase transition of the alloy NPs from the face centered cubic (fcc) structure to the L1₀ structure. One was heating after the sputter deposition in N2 at atmospheric pressure for 1 h. Another was a combination of heating during the sputter deposition and subsequent heating under an Ar pressure from 0.5 to 0.8 Pa for 1 h. Although both cases exhibited lowering of the phase transition temperatures compared with the temperature for the bulk, the latter procedure at 423 K only provided the NPs (approx. 5 nm) consisting of the L1₀ structure in the dispersed manner. A mechanism for forming the L1₀ structure was proposed for explaining the difference between results obtained using the two procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4dt03557gDOI Listing

Publication Analysis

Top Keywords

sputter deposition
20
l1₀ structure
16
phase transition
8
heating sputter
8
structure
5
sputter
5
deposition
5
synthesis alloy
4
alloy aucu
4
aucu nanoparticles
4

Similar Publications

Self-assembled DNA origami lattices on silicon oxide surfaces have great potential to serve as masks in molecular lithography. However, silicon oxide surfaces come in many different forms and the type and history of the silicon oxide has a large effect on its physicochemical surface properties. Therefore, we here investigate DNA origami lattice formation on differently fabricated SiOx films on silicon wafers after wet-chemical oxidation by RCA1.

View Article and Find Full Text PDF

Research Progress of MEMS Gas Sensors: A Comprehensive Review of Sensing Materials.

Sensors (Basel)

December 2024

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.

The MEMS gas sensor is one of the most promising gas sensors nowadays due to its advantage of small size, low power consumption, and easy integration. It has been widely applied in energy components, portable devices, smart living, etc. The performance of the gas sensor is largely determined by the sensing materials, as well as the fabrication methods.

View Article and Find Full Text PDF

Aluminum nitride (AlN) with a wide band gap (approximately 6.2 eV) has attractive characteristics, including high thermal conductivity, a high dielectric constant, and good insulating properties, which are suitable for the field of resistive random access memory. AlN thin films were deposited on ITO substrate using the radio-frequency magnetron sputtering technique.

View Article and Find Full Text PDF

Integrating nanocrystalline diamond (NCD) films on silicon chips has great practical significance and many potential applications, including high-power electronic devices, microelectromechanical systems, optoelectronic devices, and biosensors. In this study, we provide a solution for ensuring heterogeneous interface integration between silicon (Si) chips and NCD films using low-temperature bonding technology. This paper details the design and implementation of a magnetron sputtering layer on an NCD surface, as well as the materials and process for the connection layer of the integrated interface.

View Article and Find Full Text PDF

Annealing Effect on Linear and Ultrafast Nonlinear Optical Properties of BiTe Thin Films.

Materials (Basel)

December 2024

Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China.

In recent years, the fabrication of materials with large nonlinear optical coefficients and the investigation of methods to enhance nonlinear optical performance have been in the spotlight. Herein, the bismuth telluride (BiTe) thin films were prepared by radio-frequency magnetron sputtering and annealed in vacuum at various temperatures. The structural and optical properties were characterized and analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/VIS/NIR spectrophotometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!