Purpose: [(11)C]T-773 is a new radioligand for positron emission tomography (PET) targeting the phosphodiesterase 10A enzyme (PDE10A). PDE10A is highly expressed in the striatum by medium spiny neurons, and it has been demonstrated to be involved in the regulation of striatal signaling through the reduction of medium spiny neuronal sensitivity towards glutamatergic excitation. PDE10A is associated with Parkinson's disease and different neuropsychiatric disorders such as Huntington's disease, obsessive-compulsive disorders (OCD) and schizophrenia. Studies have indicated that the inhibition of PDE10A may represent a novel therapeutic approach to the treatment of the aforementioned diseases characterized by the reduced activity of medium spiny neurons. An appropriate PET radioligand for PDE10A would help to facilitate drug development and drug evaluation.
Procedures: We have evaluated the [(11)C]T-773 ligand in PDE10A knockout mice (heterozygous [HET] and homozygous [HOM]) as well as in normal control animals (WILD) with PET.
Results: The regional percent standardized uptake values (%SUV; mean ± SD) in the striatum were 48.2 ± 1.0 (HOM), 63.6 ± 5.3 (HET) and 85.1 ± 6.3 (WILD). Between each animal group the striatal %SUV values were significantly different (p < 0.0001). The striatal BPND values (mean ± SD) were 0.0 ± 0.0 (HOM), 0.14 ± 0.07 (HET) and 0.56 ± 0.15 (WILD). The BPND values were significantly lower in homozygous and heterozygous animals compared to wild type (p < 0.0001).
Conclusions: The novel PDE10A radioligand [(11)C]T-773 shows increased signals with higher levels of PDE10A and acceptable binding in the striatum in control animals compared to knockout mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11307-015-0822-z | DOI Listing |
Neurobiol Dis
December 2024
Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. Electronic address:
Background: Altered balance between striatal direct and indirect pathways contributes to early motor, cognitive and psychiatric symptoms in Huntington disease (HD). While degeneration of striatal D2-type dopamine receptor (D2)-expressing indirect pathway medium spiny neurons (iMSNs) occurs prior to that of D1-type dopamine receptor (D1)-expressing direct pathway neurons, altered corticostriatal synaptic function precedes degeneration. D2-mediated signaling on iMSNs reduces their excitability and promotes endocannabinoid (eCB) synthesis, suppressing glutamate release from cortical afferents.
View Article and Find Full Text PDFJ Neurosci Res
December 2024
Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, School of Medical Science, Centre for Brain Research, University of Auckland, Auckland, New Zealand.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder traditionally characterized by the selective loss of medium spiny neurons in the basal ganglia. However, it has become apparent that white matter injury and oligodendrocyte dysfunction precede the degeneration of medium spiny neurons, garnering interest as a key pathogenic mechanism of HD. Oligodendrocytes are glial cells found within the central nervous system involved in the production of myelin and the myelination of axons.
View Article and Find Full Text PDFNeuropsychopharmacology
December 2024
Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.
The accumulation of GluA2-lacking Ca-permeable AMPARs (CP-AMPARs) in the medium spiny neurons (MSNs) of the nucleus accumbens (NAc) is required for the expression of incubation of cocaine craving. The exchange protein directly activated by cAMP (Epac) is an intracellular effector of cAMP and a guanine nucleotide exchange factor for the small GTPase Rap1. Epac2 has been implicated in the trafficking of AMPA receptors at central synapses.
View Article and Find Full Text PDFTransl Psychiatry
December 2024
Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Basal ganglia is proposed to mediate symptoms underlying bipolar disorder (BD). To understand the cell type-specific gene expression and network changes of BD basal ganglia, we performed single-nucleus RNA sequencing of 30,752 nuclei from caudate, putamen, globus pallidus, and substantia nigra of control human postmortem brain and 24,672 nuclei from BD brain. Differential expression analysis revealed major difference lying in caudate, with BD medium spiny neurons (MSNs) expressing significantly higher PDE5A, a cGMP-specific phosphodiesterase.
View Article and Find Full Text PDFα/β-hydrolase domain 6 (ABHD6) is a lipase linked to physiological functions affecting energy metabolism. Brain ABHD6 degrades 2-arachidonoylglycerol and thereby modifies cannabinoid receptor signalling. However, its functional role within mesoaccumbens circuitry critical for motivated behaviour and considerably modulated by endocannabinoids was unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!